1
Доступно поисковых запросов: 1 из 2
Следующий пробный период начнётся: 13 октября 2022 в 06:22
Снять ограничение

ГОСТ ISO 13099-2-2016

Государственная система обеспечения единства измерений. Методы определения дзета-потенциала. Часть 2. Оптические методы
Действующий стандарт
Проверено:  05.10.2022

Информация

Название Государственная система обеспечения единства измерений. Методы определения дзета-потенциала. Часть 2. Оптические методы
Название английское State system for ensuring the uniformity of measurements. Methods for zeta-potential determination. Part 2. Optical methods
Дата актуализации текста 01.01.2021
Дата актуализации описания 01.01.2021
Дата издания 11.03.2019
Дата введения в действие 01.03.2017
Область и условия применения Настоящий стандарт распространяется на оптический метод определения дзета-потенциала частиц или макромолекул в суспензиях или в растворах (далее - метод измерений)
Опубликован Официальное издание. М.: Стандартинформ, 2019 год
Утверждён в Росстандарт

Расположение в каталоге ГОСТ

ГОСТ ISO 13099-2-2016

Группа Т84.5

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Государственная система обеспечения единства измерений

МЕТОДЫ ОПРЕДЕЛЕНИЯ ДЗЕТА-ПОТЕНЦИАЛА

Часть 2

Оптические методы

State system for ensuring the uniformity of measurements. Methods for zeta-potential determination. Part 2. Optical methods

МКС 17.020

Дата введения 2017-03-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений" (ФГУП "ВНИИФТРИ") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (от 29 января 2016 г. протокол N 84-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

Туркмения

ТМ

Главгосслужба "Туркменстандартлары"


(Поправка. ИУС N 7-2022).

4 Приказом Федерального агентства по техническому регулированию и метрологии от 19 октября 2016 г. N 1423-ст межгосударственный стандарт ГОСТ ISO 13099-2-2016 введен в действие в качестве национального стандарта Российской Федерации с 1 марта 2017 г.

5 Настоящий стандарт идентичен международному стандарту ISO 13099-2:2012* "Коллоидные системы. Методы определения дзета-потенциала. Часть 2. Оптические методы" ("Colloidal systems - Methods for zeta-potential determination - Part 2: Optical methods", IDT).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.



Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Март 2019 г.  


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)


ВНЕСЕНА поправка, опубликованная в ИУС N 7, 2022 год

Поправка внесена изготовителем базы данных

     1 Область применения

Настоящий стандарт распространяется на оптический метод определения дзета-потенциала частиц или макромолекул в суспензиях или в растворах (далее - метод измерений).

     2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные стандарты. Для датированной ссылки применяют только указанное издание ссылочного стандарта.     

ISO 13099-1, Colloidal systems - Methods for zeta-potential determination - Part 1: Electroacoustic and electrokinetic phenomena (Коллоидные системы. Методы определения дзета-потенциала. Часть 1. Электроакустические и электрокинетические явления)

ISO Guide 30, Terms and definitions used in connection with reference materials (Понятия и определения, используемые в соответствии со справочными материалами)

     3 Термины, определения и обозначения

     3.1 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1.1 броуновское движение (Brownian motion): Случайное движение частиц за счет теплового движения взвешенных в жидкости молекул.

3.1.2 доплеровский сдвиг (Doppler shift): Изменение частоты и длины волны излучения, воспринимаемого наблюдателем, двигающимся относительно источника излучения.

3.1.3 поверхностный потенциал , В (electric surface potential): Разность потенциалов на поверхности и в объеме жидкости.

3.1.4 электрокинетический потенциал, дзета-потенциал, -потенциал, В (electrokinetic potential, zete-potential, -potential): Разность между электрическими потенциалами в плоскости скольжения и в объеме жидкости.

3.1.5 электроосмос (electroosmosis): Движение жидкости через или мимо заряженной поверхности, например неподвижных частиц, пористого затвора, капилляра или мембраны, вызванное внешним электрическим полем, которое является результатом силы, действующей со стороны внешнего поля на противоположно заряженные ионы в жидкости.

3.1.6 электроосмотическая скорость , м/с (electroosmotic velocity): Постоянная скорость жидкости на большом расстоянии от заряженной поверхности.

3.1.7 электрофоретическая подвижность , м/В·с (electrophoretic mobility): Электрофоретическая скорость в единицу напряженности электрического поля.

Примечание - Электрофоретическая подвижность положительная, если частицы перемещаются к более низкому потенциалу (отрицательный электрод), и отрицательная в противоположном случае.

3.1.8 электрофоретическая скорость , м/с (electrophoretic velocity): Скорость частицы во время электрофореза.

3.1.9 плоскость скольжения, плоскость сдвига (slipping plane): Абстрактная плоскость в непосредственной близости от границы раздела жидкость/твердое тело, где жидкость начинает скользить по отношению к поверхности под воздействием напряжения сдвига.


     3.2 Обозначения


В настоящем стандарте применены следующие обозначения:

a - радиус частицы, м;

D - коэффициент диффузии, м/с;

E - напряженность электрического поля, В/м;

- постоянная Больцмана, =1,3806488·10 Дж/К;

- интенсивность света, Вт/м;

- число Авогадро, =6,02214129·10 моль;

n - средний показатель преломления;

- капиллярный радиус, м;

- спектральная плотность, Дж·м;

- ширина распада, эВ;

- средняя проницаемость, Ф/м;

- электрокинетический потенциал (дзета-потенциал), В;

- средняя вязкость, Па·с;

- угол между падающим и рассеянным светом, рад;

- угол между двумя пересекающимися лучами, рад;

- обратная длина Дебая, м;

- длина волны, м;

- электрофоретическая подвижность, м/В·с;

- электроосмотическая подвижность жидкости, м/В·с;

- частота, Гц;

- угол между рассеянным светом и положением электрического поля, рад;

- время задержки в автокорреляционной функции, с;

- объемная доля частиц, м;

- угловая частота (=2), рад·с.

     4 Основы теории

Суспензия, содержащая частицы с определенным зарядом, помещена в ячейку, в которой на некотором расстоянии друг от друга находятся два электрода. Схематическое изображение электрофоретической ячейки представлено на рисунке 1. Ячейка может иметь цилиндрическую или прямоугольную форму. Потенциал приложен между электродами. В процессе электрофореза заряженные частицы двигаются к электроду противоположного знака заряда. Кроме того, если стенки ячейки заряжены, то возникает эффект электроосмоса, который вызывает движение жидкости вдоль стенок. Направление и скорость жидкости зависят от знака и величины заряда стенок. Скорость частицы в системе координат, связанной с ячейкой, является суперпозицией электрофоретической и электроосмотической скоростей. Нужно отметить, что время, потраченное частицей на достижение максимальной электрофоретической скорости после приложения электрического поля, намного меньше времени, требуемого для достижения устойчивой электроосмотической скорости жидкости в ячейке. Скорость и направление движения частиц в определенных координатах измеряют с помощью микроскопа с камерой. Измерения электрофоретического рассеяния света проводят с помощью доплеровского измерителя скорости. При известном расстоянии между электродами и приложенном к ним электрическом поле можно определить электрофоретическую подвижность, из которой в соответствии с известными теоретическими подходами рассчитывается дзета-потенциал. Для определения константы измерительной ячейки используют образцы с известным значением дзета-потенциала.


a - зона измерения, d - расстояние между электродами

Рисунок 1 - Схематическое изображение электрофоретической ячейки

Существуют два метода контроля движения частиц в электрическом поле.

Первый метод - обработка изображений частиц, наблюдаемых через микроскоп. Он называется "метод микроскопии" или "микроэлектрофорез".

Второй метод основан на анализе рассеянного частицами излучения и определения электрофоретической подвижности по доплеровскому сдвигу частоты рассеянного излучения. Он носит название "электрофоретическое рассеяние света". Для применения оптических методов необходимо знать константу ячейки, которая определяется посредством измерения растворов с известной проводимостью.

     5 Методы микроскопии

Принцип методов микроскопии [1] состоит в следующем. Источник излучения освещает частицы, перемещающиеся под влиянием постоянного или переменного электрического поля. Освещенные частицы наблюдаются благодаря рассеянию излучения. Для получения изображения используют методы светлого или темного поля либо оба метода совместно [2].

Существует несколько подходов к обработке изображений движущихся частиц, полученных с помощью микроскопии. В зависимости от степени участия оператора они классифицируются на ручной, полуавтоматический и автоматический.

В полуавтоматических методах наблюдение за частицами через микроскоп ведется вручную, в то время как производится сканирование освещающего ячейку излучения или перемещение призмы. Скорость сканирования или скорость перемещения призмы должны быть скорректированы таким образом, чтобы изображение частицы, просматриваемое в микроскопе, было статичным. Такая скорость соответствует электрофоретической скорости частицы [3], [4]. Эти методы применимы только к образцам с одинаковой электрофоретической подвижностью. Методы, сочетающие в себе электрофоретическое рассеяние с микроскопией, применяются также к образцам с разной электрофоретической подвижностью [5], [6].

Приборы с зарядовой связью (ПЗС) позволяют получать изображения, передавать их на компьютер и далее, используя анализ изображения, восстанавливать траектории частиц, перемещающихся под влиянием электрического поля. Темнопольная микроскопия позволяет определять подвижность наночастиц. В данном методе осуществляется приложение электрического поля в течение очень коротких периодов времени, что разрешает проблемы тепловой конвекции и электрохимического загрязнения. Концентрация частиц должна быть мала для наблюдения траектории движения отдельных частиц.

В некоторых оптических приборах применена регистрация рассеянного света под углом 90°. На рисунке 2 представлена схема оптического анализатора, применяемого при микроэлектрофорезе. Лазер служит для освещения фокальной плоскости микроскопа. Лазерный луч и ось микроскопа перпендикулярны электрическому полю. Направление поля перпендикулярно плоскости рисунка.

Лазерное освещение и фокусировка микроскопа позволяют регистрировать сигнал от частиц в плоскости, где эффектом электроосмоса можно пренебречь при измерении электрофоретической подвижности частиц [7].


1 - лазер; 2 - область пересечения; 3 - объектив микроскопа; 4 - видеокамера

Рисунок 2 - Схема оптического анализатора, применяемого при микроэлектрофорезе

     6 Метод электрофоретического рассеяния света ELS

     6.1 Сущность метода


Электрофоретическое рассеяние света ELS является косвенным методом измерения электрофоретической подвижности , основанным на доплеровском сдвиге в рассеянном свете. Когерентный падающий свет освещает частицы, диспергированные в жидкости и находящиеся в электрическом поле. Заряженные частицы двигаются к аноду или катоду в зависимости от знака их заряда. Из-за движения частота рассеянного света от частиц изменяется в соответствии с эффектом Доплера. Из распределения сдвига частоты определяется распределение электрофоретической подвижности [8].

Закупки не найдены
Свободные
Р
Заблокированные
Р
Роль в компании Пользователь

Для продолжения необходимо войти в систему

После входа Вам также будет доступно:
  • Автоматическая проверка недействующих стандартов в закупке
  • Создание шаблона поиска
  • Добавление закупок в Избранное