1
Доступно поисковых запросов: 1 из 2
Следующий пробный период начнётся: 06 февраля 2023 в 11:47
Снять ограничение

ГОСТ ISO/TS 80004-6-2016

Нанотехнологии. Часть 6. Характеристики нанообъектов и методы их определения Термины и определения
Действующий стандарт
Проверено:  29.01.2023

Информация

Название Нанотехнологии. Часть 6. Характеристики нанообъектов и методы их определения Термины и определения
Дата актуализации текста 01.01.2021
Дата актуализации описания 01.01.2021
Дата издания 21.09.2020
Дата введения в действие 01.07.2017
Область и условия применения Настоящий стандарт является частью серии стандартов ISO/TS 80004 и устанавливает термины и определения понятий в области нанотехнологий, относящихся к характеристикам нанообъектов и методам их определения
Опубликован Официальное издание. М.: Стандартинформ, 2020
Утверждён в Росстандарт

ГОСТ ISO/TS 80004-6-2016

     

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НАНОТЕХНОЛОГИИ

Часть 6

Характеристики нанообъектов и методы их определения

Термины и определения

Nanotechnologies. Part 6. Characteristics of nano-objects and methods for determination. Terms and definitions



МКС 01.040.07

         07.030

Дата введения 2017-07-01

     

     Предисловие


Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении" (ВНИИНМАШ) на основе собственного перевода на русский язык англоязычной версии документа, указанного в пункте 5

2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 441 "Нанотехнологии"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 25 октября 2016 г. N 92-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Беларусь

BY

Госстандарт Республики Беларусь

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 9 ноября 2016 г. N 1647-ст межгосударственный стандарт ГОСТ ISO/TS 80004-6-2016 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2017 г.

5 Настоящий стандарт идентичен международному документу ISO/TS 80004-6:2013* "Нанотехнологии. Словарь. Часть 6. Характеристики нанообъектов" ("Nanotechnologies - Vocabulary - Part 6: Nano-object characterization", IDT).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.


Наименование настоящего стандарта изменено относительно наименования указанного международного документа для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

Международный документ разработан техническим комитетом по стандартизации ISO/TC 229 "Нанотехнологии" Международной организации по стандартизации (ISO).

Стандарт подготовлен на основе применения ГОСТ Р 56647-2015/ISO/TS 80004-6:2013*

_______________

* Приказом Федерального агентства по техническому регулированию и метрологии от 9 ноября 2016 г. N 1647-ст ГОСТ Р 56647-2015/ISO/TS 80004-6:2013 отменен с 1 июля 2017 г.

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Август 2020 г.


     Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.
     
     В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"


Введение


Методы измерений и современные приборы позволили открыть мир нанотехнологий. Определив характеристики, можно понять свойства и функциональную направленность применения нанообъектов.

Для определения характеристик нанообъектов важно взаимодействие специалистов и ученых, осуществляющих свою деятельность в различных областях, например материаловедении, биологии, химии, физике, а также имеющих различный опыт работы - как экспериментальной, так и теоретической. Информация о характеристиках нанообъектов и возможности их определения необходима и для представителей проверяющих органов и специалистов в области токсикологии. С целью обеспечения правильного понимания специалистами информации о характеристиках нанообъектов, а также для обмена сведениями о результатах измерений необходимо уточнение понятий и установление стандартизованных терминов и соответствующих определений.

В настоящем стандарте термины распределены по следующим разделам:

- раздел 2 "Основные термины и определения";

- раздел 3 "Термины и определения понятий, относящихся к размерам нанообъектов и методам их определения";

- раздел 4 "Термины и определения понятий, относящихся к методам химического анализа";

- раздел 5 "Термины и определения понятий, относящихся к методам определения других характеристик нанообъектов".

Наименования этих разделов сформулированы только для своеобразного руководства по поиску терминов в настоящем стандарте, так как некоторые термины относятся к методам, с помощью которых можно определить более одной характеристики нанообъектов, и их можно поместить в другие разделы стандарта. В подразделе 3.1 приведены основные термины раздела 3, которые использованы в определениях других терминов данного раздела, в том числе терминов, относящихся к устройствам, применяемым для определения характеристик нанообъектов.

Большинство методов предусматривает проведение измерений в специальных условиях, включая и соответствующую подготовку исследуемых объектов, например необходимость размещения нанообъектов на специальной поверхности, в жидкой среде или вакууме, что может повлечь за собой изменение характеристик нанообъектов.

Порядок расположения терминов, относящихся к методам определения характеристик нанообъектов, в настоящем стандарте не указывает на преимущественное применение определенных методов, и перечень этих терминов не является исчерпывающим. Методы, термины которых установлены в настоящем стандарте, более распространены, и их чаще применяют для определения тех или иных характеристик нанообъектов, чем другие. В таблице 1 приведены наиболее распространенные методы, применяемые для определения характеристик нанообъектов.


Таблица 1 - Наиболее распространенные методы, применяемые для определения характеристик нанообъектов

Характеристика

Методы

Размер

Атомно-силовая микроскопия (АСМ), центробежное осаждение частиц в жидкости (ЦОЖ), система анализа дифференциальной электрической подвижности частиц (САДЭП), динамическое рассеяние света (ДРС), растровая электронная микроскопия (РЭМ), анализ траекторий движения частиц (АТДЧ), просвечивающая электронная микроскопия (ПЭМ)

Форма

Атомно-силовая микроскопия (АСМ), растровая электронная микроскопия (РЭМ), просвечивающая электронная микроскопия (ПЭМ)

Площадь поверхности

Метод Брунауэра, Эммета и Теллера (метод БЭТ)

Химические характеристики поверхности объекта

Масс-спектрометрия вторичных ионов (МСВИ), рентгеновская фотоэлектронная спектроскопия (РФЭС)

Химический состав объекта

Масс-спектрометрия с индуктивно связанной плазмой (ИСП-МС), спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия)

Электрокинетический потенциал частиц в суспензии

Определение дзета-потенциала


Настоящий стандарт предназначен для применения в качестве основы для разработки других стандартов на термины и определения в области нанотехнологий, затрагивающих вопросы определения характеристик нанообъектов.

Установленные в настоящем стандарте термины расположены в систематизированном порядке, отражающем систему понятий в области нанотехнологий, относящихся к характеристикам нанообъектов и методам их определения.

Для каждого понятия установлен один стандартизованный термин.

Нерекомендуемые к применению термины-синонимы приведены в круглых скобках после стандартизованного термина и обозначены пометой "Нрк".

Термины-синонимы без пометы "Нрк" приведены в качестве справочных данных и не являются стандартизованными.

Приведенные определения можно при необходимости изменять, вводя в них произвольные признаки, раскрывая значения используемых в них терминов, указывая объекты, относящиеся к определенному понятию. Изменения не должны нарушать объем и содержание понятий, определенных в настоящем стандарте.

В стандарте приведены иноязычные эквиваленты стандартизованных терминов на английском языке.

В стандарте приведен алфавитный указатель терминов на русском языке, а также алфавитный указатель эквивалентов терминов на английском языке.

Стандартизованные термины набраны полужирным шрифтом, их краткие формы, представленные аббревиатурой, и иноязычные эквиваленты - светлым, синонимы - курсивом.

     1 Область применения


Настоящий стандарт является частью серии стандартов ISO/TS 80004 и устанавливает термины и определения понятий в области нанотехнологий, относящихся к характеристикам нанообъектов и методам их определения.

     2 Основные термины и определения


2.1

нанодиапазон: Диапазон линейных размеров приблизительно от 1 до 100 нм.

nanoscale

Примечания

1 Верхнюю границу этого диапазона принято считать приблизительной, так как в основном уникальные свойства нанообъектов за ней не проявляются.

2 Нижнее предельное значение в этом определении (приблизительно 1 нм) введено для того, чтобы исключить из рассмотрения в качестве нанообъектов или элементов наноструктур отдельные атомы или небольшие группы атомов.


[ISO/TS 80004-1:2010, статья 2.1]


2.2

нанообъект: Материальный объект, линейные размеры которого по одному, двум или трем измерениям находятся в нанодиапазоне (2.1).

nano-object

Примечание - Данный термин распространяется на все дискретные объекты, линейные размеры которых находятся в нанодиапазоне.


[ISO/TS 80004-1:2010, статья 2.5]


2.3

наночастица: Нанообъект (2.2), линейные размеры которого по всем трем измерениям находятся в нанодиапазоне (2.1).

nanoparticle

Примечание - Если по одному или двум измерениям размеры нанообъекта значительно больше, чем по третьему измерению (как правило, более чем в три раза), то вместо термина "наночастица" можно использовать термины "нановолокно" (2.6) или "нанопластина" (2.4).


[ISO/TS 27687:2008, статья 4.1]


2.4

нанопластина: Нанообъект (2.2), линейные размеры которого по одному измерению находятся в нанодиапазоне (2.1), а размеры по двум другим измерениям значительно больше.

nanoplate

Примечания

1 Наименьший линейный размер - толщина нанопластины.

2 Размеры по двум другим измерениям значительно больше и отличаются от толщины более чем в три раза.

3 Наибольшие линейные размеры могут находиться вне нанодиапазона.


[ISO/TS 27687:2008, статья 4.2]


2.5

наностержень: Твердое нановолокно (2.6).

[ISO/TS 27687:2008, статья 4.5]

nanorod


2.6

нановолокно: Нанообъект (2.2), линейные размеры которого по двум измерениям находятся в нанодиапазоне (2.1), а по третьему измерению значительно больше.

nanofibre

Примечания

1 Нановолокно может быть гибким или жестким.

2 Два сходных линейных размера по двум измерениям не должны отличаться друг от друга более чем в три раза, а размеры по третьему измерению должны превосходить размеры по первым двум измерениям более чем в три раза.

3 Наибольший линейный размер может находиться вне нанодиапазона.


[ISO/TS 27687:2008, статья 4.3]


2.7

нанотрубка: Полое нановолокно (2.6).

[ISO/TS 27687:2008, статья 4.4]

nanotube


2.8

квантовая точка: Нанообъект, линейные размеры которого по трем измерениям близки длине волны электрона в материале данного нанообъекта и внутри которого потенциальная энергия электрона ниже, чем за его пределами, при этом движение электрона ограничено во всех трех измерениях.

[ISO/TS 27687:2008, статья 4.7]

quantum dot


2.9

частица: Мельчайшая часть вещества с определенными физическими границами.

particle

Примечания

1 Физическая граница может также быть описана как межфазная область взаимодействия (интерфейс).

2 Частица может перемещаться как единое целое.

3 Настоящее общее определение частицы применимо к нанообъектам (2.2).


[ISO 14644-6:2007, статья 2.102, ISO/TS 27687:2008, статья 3.1]


2.10

агломерат: Совокупность слабо связанных между собой частиц (2.9), или их агрегатов (2.11), или тех и других, площадь внешней поверхности которой равна сумме площадей внешних поверхностей ее отдельных компонентов.

agglomerate

Примечания

1 Силы, скрепляющие агломерат в одно целое, являются слабыми и обусловленными, например силами взаимодействия Ван-дер-Ваальса, или простым физическим переплетением частиц друг с другом.

2 Агломераты также называют "вторичные частицы", а их исходные составляющие называют "первичные частицы".


[ISO/TS 27687:2008, статья 3.2]


2.11

агрегат: Совокупность сильно связанных между собой или сплавленных частиц (2.9), общая площадь внешней поверхности которой может быть значительно меньше вычисленной суммарной площади поверхности ее отдельных компонентов.

aggregate

Примечания

1 Силы, удерживающие частицы в составе агрегата, являются более прочными и обусловленными, например ковалентными связями, или образованными в результате спекания или сложного физического переплетения частиц друг с другом.

2 Агрегаты также называют "вторичные частицы", а их исходные составляющие - "первичные частицы".


[ISO/TS 27687:2008, статья 3.3]


2.12

аэрозоль: Дисперсная система, состоящая из твердых или жидких частиц (2.9), взвешенных в газе.


[ISO 15900:2009, статья 2.1]

aerosol


2.13

суспензия: Жидкая неоднородная система, в которой дисперсной фазой являются мелкие частицы твердого вещества.


[ISO 4618:2006, статья 2.243]

suspension

     

     3 Термины и определения понятий, относящихся к размерам нанообъектов и методам их определения

     3.1 Термины и определения понятий, относящихся к размерам и форме нанообъектов


3.1.1

размер частицы: Линейный размер частицы (2.9), определенный соответствующими методом и средствами измерений в заданных условиях.

particle size

Примечание - Разные методы анализа основаны на измерении различных физических характеристик частиц. Независимо от характеристик частицы всегда можно определить ее линейные размеры, например, эквивалентный диаметр сферической частицы.


[ISO 26824:2013, статья 1.5]


3.1.2

распределение частиц по размерам: Распределение частиц (2.9) в зависимости от их размеров (3.1.1).

particle size distribution

Примечание - Термин "распределение частиц по размерам" обозначает то же понятие, что и термины "функция распределения частиц по размерам" и "распределение концентрации частиц в зависимости от их размеров" (количественное распределение частиц по размерам получают, относя число измеренных частиц определенного размерного класса к общему количеству измеренных частиц).


[ISO 14644-1:1999, статья 2.2.4, определение термина изменено]


3.1.3

форма частицы: Внешнее геометрическое очертание частицы (2.9).

[ISO 3252:1999, статья 1401]

particle shape


3.1.4

аспектное соотношение: Отношение длины частицы (2.9) к ее ширине.

[ISO 14966:2002, статья 2.8]

aspect ratio

3.1.5

эквивалентный диаметр: Диаметр сферического объекта, оказывающий такое же воздействие на средство измерения для определения распределения частиц по размерам, что и измеряемая частица (2.9).

equivalent diameter

Примечания

1 Физические свойства, к которым относят эквивалентный диаметр, обозначают с помощью соответствующего индекса (ISO 9276-1:1998 [2]).

2 Для дискретного счета частиц приборами, работающими на принципе рассеяния света, используют эквивалентный оптический диаметр.

3 Другие характеристики материала, такие как плотность, используют для расчета эквивалентного диаметра частицы, например, как в уравнении Стокса при определении зависимости между размером частицы и временем ее оседания в жидкости. Значения характеристик материала, используемые для расчета, должны быть представлены дополнительно.

4 С помощью измерительных приборов инерционного типа определяют аэродинамический диаметр. Аэродинамический диаметр - это диаметр сферы плотностью 1000 кг/м, которая имеет такую же скорость осаждения, что и частица с неровной поверхностью.


[ISO/TS 27687:2008, статья А.3.3, определение термина изменено]

     

     3.2 Термины и определения понятий, относящихся к методам рассеяния света


3.2.1

радиус инерции: Мера распределения массы объекта вокруг оси, проходящей через его центр, выраженная отношением квадратного корня из момента инерции относительно данной оси к массе объекта.

radius of gyration

Примечание - Для определения характеристик нанообъектов (2.2), например размеров частиц (3.1.1), необходимо определить значение радиуса инерции с помощью методов статического рассеяния света, например, малоуглового нейтронного рассеяния (3.2.2) или малоуглового рентгеновского рассеяния (3.2.4).


[ISO 14695:2003, статья 3.4]

3.2.2 малоугловое нейтронное рассеяние; МНР: Метод исследования объекта, основанный на измерении интенсивности рассеянного пучка нейтронов на объекте при малых значениях углов рассеяния.

small angle neutron scattering; SANS

Примечание - Рекомендуемый диапазон углов рассеяния составляет от 0,5 до 10° и соответствует возможности определения структуры материала, а также определения размеров рассеивающих неоднородностей в диапазоне от 1 до 100 нм. Метод позволяет получать информацию о размерах частиц (2.9) и форме диспергированных в однородной среде частиц.


3.2.3 дифракция нейтронов: Явление упругого рассеяния нейтронов, применяемое для исследования атомной или магнитной структуры вещества.

neutron diffraction

Примечание - В методах измерений, основанных на дифракции нейтронов, регистрируют нейтроны с энергией, примерно совпадающей с энергией падающих нейтронов. С помощью сформированной в процессе исследования дифракционной картины получают информацию о структуре вещества.



3.2.4

малоугловое рентгеновское рассеяние; МРР: Метод исследования объекта, основанный на измерении интенсивности рассеянного рентгеновского излучения, проходящего через объект, при малых значениях углов рассеяния.

small angle X-ray scattering; SAXS

Примечание - Рекомендуемый диапазон углов рассеяния составляет от 0,1° до 10° и соответствует возможности определения структуры макромолекул, а также определения размеров рассеивающих неоднородностей в диапазоне от 5 до 200 нм.


[ISO 18115-1, статья 3.18]


3.2.5

рассеяние света: Преобразование распределения светового потока на границе раздела двух сред, имеющих разные оптические свойства.

[ISO 13320:2009, статья 3.1.17]

light scattering

3.2.6 гидродинамический диаметр: Эквивалентный диаметр (3.1.5) частицы (2.9), имеющей то же значение коэффициента диффузии в жидкой среде, что и реальная частица в этой среде.

hydrodynamic diameter

3.2.7 динамическое рассеяние света; ДРС; фотонная корреляционная спектроскопия; ФКС; квазиупругое рассеяние света; КРС: Метод определения размеров частиц (3.1.1) в суспензии (2.13), основанный на анализе изменения интенсивности рассеянного света частицами (2.9), находящихся в броуновском движении, при зондировании исследуемого объекта лазерным лучом.

dynamic light scattering; DLS; photon correlation spectroscopy; PCS; quasi-elastic light scattering; QELS

Примечания

1 Проведя анализ временной зависимости интенсивности рассеянного света, можно определить коэффициент диффузии и, следовательно, размеры частиц, например гидродинамический диаметр (3.2.6), по формуле Стокса - Эйнштейна.

2 Данный метод применяют для определения размеров наночастиц (2.3) и частиц в диапазоне от 1 до 6000 нм. Верхний предел диапазона ограничен наличием броуновского движения и осаждением частиц.

3.2.8 анализ траекторий движения наночастиц; АТДН; анализ траекторий движения частиц; АТДЧ: Метод определения размеров частиц (3.1.1), основанный на исследовании траекторий перемещения облученных сфокусированным пучком лазера частиц (2.9), находящихся в броуновском движении в суспензии (2.13).

nanoparticle tracking analysis; NTA; particle tracking analysis; РТА

Примечания

1 Проведя анализ временной зависимости интенсивности рассеянного света движущихся частиц, можно определить коэффициент диффузии и, следовательно, размеры частиц, например гидродинамический диаметр (3.2.6), по формуле Стокса - Эйнштейна.

2 Данный метод применяют для определения размеров наночастиц (2.3) и частиц в диапазоне от 10 до 2000 нм. Нижний предел диапазона ограничен показателем преломления частиц, а верхний предел диапазона - наличием броуновского движения и осаждением частиц.

     

     3.3 Термины и определения понятий, относящихся к устройствам, применяемым для определения характеристик аэрозольных нанообъектов


3.3.1

счетчик конденсированных частиц; СКЧ: Устройство, измеряющее счетную концентрацию частиц (2.9) в аэрозоле (2.12).

condensation particle counter; СPC

Примечания

1 Диапазон размеров частиц, регистрируемых СКЧ, - от нескольких нанометров до нескольких сотен нанометров.

2 СКЧ можно использовать совместно с классификатором дифференциальной электрической подвижности (КДЭП) (3.3.2).

3 В некоторых случаях СКЧ называют счетчиком ядер конденсации (СЯК).


[ISO 15900:2009, статья 2.5]


3.3.2

классификатор дифференциальной электрической подвижности частиц; КДЭП: Устройство, распределяющее аэрозольные частицы (2.9) по размерам в соответствии с их электрической подвижностью и регистрирующее частицы только определенных размеров.

differential electrical mobility classifier; DEMC

Примечание - Принцип распределения частиц по размерам в КДЭП основан на уравновешивании электрического заряда каждой частицы с силой ее аэродинамического сопротивления при прохождении через электрическое поле. Электрическая подвижность частиц зависит от их размеров, режимов работы и формы КДЭП. Размер частицы можно определить по числу зарядов на ней.


[ISO 15900:2009, статья 2.7]


3.3.3

система анализа дифференциальной электрической подвижности частиц; САДЭП: Система, применяемая для измерения распределения субмикронных частиц (2.9) аэрозоля по размерам, состоящая из КДЭП, нейтрализатора, счетчика частиц, соединительных трубок, компьютера и программного обеспечения.


[ISO 15900:2009, статья 2.8]

differential mobility analysing system; DMAS


3.3.4

электрометр с цилиндром Фарадея; ЭЦФ: Устройство для измерения электрических зарядов аэрозольных частиц (2.9).

Faraday-cup aerosol electrometer; FCAE

Примечание - Цилиндр Фарадея состоит из приемника заряженных аэрозольных частиц, помещенного в экранирующий заземленный каркас и соединенного с электрометром и счетчиком частиц.


[ISO 15900:2009, статья 2.12, определение термина изменено]

     

     3.4 Термины и определения понятий, относящихся к методам разделения веществ

3.4.1 проточное фракционирование в силовом поле; ПФП: Метод разделения и анализа частиц (2.9), основанный на явлении распределения частиц суспензии (2.13), пропускаемой через узкий канал, в соответствии с их размерами и подвижностью под действием внешнего силового поля.

field flow fractionation; FFF

Примечания

1 Силовое поле может быть различной природы, например, гравитационным, центробежным, электрическим, магнитным.

2 В процессе ПФП или после его завершения с помощью соответствующего устройства определяют размеры нанообъектов (2.2) и их распределение по размерам.

3.4.2 центробежное осаждение частиц в жидкости; ЦОЖ; дифференциальное центрифугирование; ДЦ: Метод разделения частиц жидкости в зависимости от их размеров и плотности под действием центробежных сил в сепарирующем роторе центрифуги.

centrifugal liquid sedimentation; CLS; differential centrifugal sedimentation; DCS

Примечание - В зависимости от плотности частиц (2.9) с помощью ЦОЖ можно выделить частицы размером от 2 нм до 10 мкм для дальнейшего определения их размеров и распределения частиц по размерам (3.1.2). ЦОЖ обеспечивает одновременное выделение частиц, отличающихся друг от друга по размерам не более чем на 2%.



3.4.3

гель-проникающая хроматография; ГПХ: Вид жидкостной хроматографии, в котором разделение веществ основано на элюировании молекул определенного гидродинамического объема в колонке хроматографа, заполненной пористым неадсорбирующим материалом, размеры пор которого соответствуют размерам этих молекул.

size-exclusion chromatography; SEC

Примечание - ГПХ можно применять совместно с методом для определения размеров и распределения по размерам объектов по динамическому рассеянию света (ДРС) (3.2.7).


[ISO 16014-1:2012, статья 3.1]

3.4.4 метод электрочувствительной зоны; метод Коултера: Метод определения распределения частиц по размерам и размеров частиц (2.9), находящихся в растворе электролита, основанный на измерении импульса электрического напряжения, возникающего при прохождении частицы через отверстие малого диаметра в непроводящей перегородке (стенке ампулы).

electrical zone sensing; Coulter counter

Примечания

1 Амплитуда импульса напряжения пропорциональна объему частицы, прошедшей через отверстие.

2 Прохождение частицы через отверстие происходит под действием давления потока жидкости (электролита) или электрического поля.

3 Для определения размеров нанообъектов (2.2) необходимо, чтобы размер отверстия соответствовал размерам нанодиапазона (2.1).

     

     3.5 Термины и определения понятий, относящихся к методам микроскопии


В данном подразделе в кратких формах терминов, представленных аббревиатурой, буква "М" означает "микроскопия" или "микроскоп" в зависимости от контекста.

3.5.1

сканирующая зондовая микроскопия; СЗМ: Метод исследования объекта с помощью микроскопа, формирующего изображение объекта путем механического перемещения зонда и регистрации взаимодействия между зондом и поверхностью объекта.

scanning-probe microscopy; SPM

Примечания

1 Термин "сканирующая зондовая микроскопия" является общим термином для таких понятий, как "атомно-силовая микроскопия" (АСМ) (3.5.2), "сканирующая оптическая микроскопия ближнего поля" (СОМБП) (3.5.4), "сканирующая микроскопия ионной проводимости" (СМИП) и "сканирующая туннельная микроскопия" (СТМ) (3.5.3).

2 С помощью микроскопов, применяемых в различных методах СЗМ, можно получать изображения объектов с пространственным разрешением от атомарного, например в СТМ, до 1 мкм, например, в сканирующей термомикроскопии.


[ISO 18115-2, статья 4.31]


3.5.2

атомно-силовая микроскопия; ACM (Нрк. сканирующая силовая микроскопия; ССМ): Метод исследования объекта с помощью микроскопа, формирующего изображение объекта в результате регистрации силы взаимодействия зондового датчика (кантилевера) с поверхностью объекта в процессе сканирования.

atomic-force microscopy; AFM; scanning force microscopy (deprecated); SFM (deprecated)

Примечания

1 С помощью АСМ можно исследовать объекты из проводниковых и диэлектрических материалов.

2 В процессе работы в некоторых атомно-силовых микроскопах (АСМ) перемещают образец в направлении осей , , , а кантилевер остается неподвижным, в других АСМ перемещают кантилевер, оставляя неподвижным образец.

3 С помощью АСМ можно выполнять измерения в вакуумной, жидкой или контролируемой газовой средах и исследовать объекты с атомарным разрешением в зависимости от образца, размера кантилевера и кривизны его острия, а также соответствующих настроек для получения изображений.

4 С помощью АСМ в процессе сканирования регистрируют силы, действующие на кантилевер, например, продольные и поперечные силы, силы трения и сдвига. Методы АСМ имеют наименования в зависимости от регистрируемой силы, например, поперечно-силовая микроскопия. Термин "атомно-силовая микроскопия" является общим термином для всех понятий методов силовой микроскопии.

5 АСМ регистрирует в конкретных точках силы, действующие на кантилевер со стороны поверхности объекта, и из массива пикселей генерирует изображение объекта.

6 Для исследования нанообъектов применяют АСМ с эффективным радиусом острия кантилевера менее 100 нм. В зависимости от материала исследуемого объекта суммарная сила между острием и объектом должна быть приблизительно 0,1 мкН, в противном случае могут произойти необратимая деформация поверхности объекта и повреждение острия кантилевера.


[ISO 18115-2, статья 4.3]


3.5.3

сканирующая туннельная микроскопия; СТМ: СЗМ (3.5.1), применяемая для исследования рельефа поверхности объекта с помощью микроскопа, формирующего изображение путем регистрации данных о туннелировании носителей заряда сквозь промежуток между исследуемым токопроводящим объектом и сканирующим его поверхность токопроводящим зондом.

scanning tunnelling microscopy; STM

Примечания

1 С помощью СТМ можно выполнять измерения в вакуумной, жидкой или контролируемой газовой средах, исследовать объекты с атомарным разрешением в зависимости от образца и кривизны острия зонда и получать информацию о плотности состояний атомов поверхности объекта.

2 Изображения могут быть сформированы на основе данных о высоте рельефа поверхности объекта при постоянных значениях туннельного тока или о туннельном токе при постоянных значениях высоты рельефа поверхности объекта, а также на основе других данных в зависимости от режимов взаимодействия зонда и поверхности исследуемого объекта.

3 С помощью СТМ можно получить информацию о локальной туннельной проводимости (туннельной плотности состояний) исследуемого объекта. Следует учитывать, что при изменении положения зонда относительно поверхности объекта получают отличные друг от друга изображения рельефа одной и той же поверхности.


[ISO 18115-2, статья 4.35]


3.5.4

сканирующая оптическая микроскопия ближнего поля; СОМБП; ближнепольная сканирующая оптическая микроскопия; БСОМ: Метод исследования объекта с помощью светового микроскопа, формирующего изображение объекта путем регистрации взаимодействия электромагнитного поля между объектом и оптическим зондом, сканирующим его поверхность, радиус острия которого меньше длины излучаемой световой волны.

near-field scanning optical microscopy; NSOM; scanning near-field optical microscopy; SNOM

Примечания

1 Зонд микроскопа размещают вблизи поверхности исследуемого объекта и удерживают на постоянном расстоянии. Зонд совершает колебательное движение параллельно поверхности объекта, при этом регистрируют изменения амплитуды и фазы отраженных сигналов и получают информацию о рельефе поверхности объекта.

2 Размер оптического зонда микроскопа зависит от размера отверстия (апертуры) диафрагмы, расположенной на конце зонда. Отверстие диафрагмы имеет размеры в диапазоне от 10 до 100 нм, что и определяет разрешающую способность микроскопа. В зависимости от наличия или отсутствия диафрагмы на конце зонда СОМБП разделяют на апертурные и безапертурные. В безапертурном СОМБП зонд представляет собой заостренное оптическое волокно, покрытое слоем металла, с радиусом на конце от 10 до 100 нм.

3 С помощью СОМБП получают не только растровое изображение объекта, но и информацию о характеристиках рельефа его поверхности, аналогичные тому, которые можно получить с помощью АСМ (3.5.2) и других методов зондовой микроскопии.


[ISO 18115-2, статья 4.18]


3.5.5

растровая электронная микроскопия; РЭМ (Нрк. сканирующая электронная микроскопия; СЭМ): Метод исследования структуры, состава и формы объекта с помощью микроскопа, формирующего изображение объекта путем сканирования его поверхности электронным зондом (электронным пучком) и регистрации характеристик вторичных процессов, индуцируемых электронным зондом (например, вторичная электронная эмиссия, обратное рассеяние электронов и рентгеновское излучение).

[ISO 17751, статья 4.10, определение термина изменено]

scanning electron microscopy; SEM


3.5.6

просвечивающая электронная микроскопия; ПЭМ: Метод исследования объекта с помощью микроскопа, формирующего изображение объекта или его дифракционной картины электронным пучком (электронным зондом), проходящим сквозь этот объект и взаимодействующим с ним.

[ISO 29301:2010, статья 3.37, определение термина изменено]

transmission electron microscopy; ТЕМ


3.5.7

Закупки не найдены
Свободные
Р
Заблокированные
Р
Роль в компании Пользователь

Для продолжения необходимо войти в систему

После входа Вам также будет доступно:
  • Автоматическая проверка недействующих стандартов в закупке
  • Создание шаблона поиска
  • Добавление закупок в Избранное