1
Доступно поисковых запросов: 1 из 2
Следующий пробный период начнётся: 02 октября 2022 в 23:24
Снять ограничение

ГОСТ Р 56647-2015

Нанотехнологии. Часть 6. Характеристики нанообъектов и методы их определения. Термины и определения
Недействующий стандарт
Проверено:  24.09.2022

Информация

Название Нанотехнологии. Часть 6. Характеристики нанообъектов и методы их определения. Термины и определения
Название английское Nanotechnologies. Part 6. Сharacteristics of nano-objects and methods for determination. Terms and definitions
Дата актуализации текста 01.01.2021
Дата актуализации описания 01.01.2021
Дата издания 14.03.2016
Дата введения в действие 01.04.2016
Дата завершения срока действия 01.07.2017
Область и условия применения Настоящий стандарт является частью серии стандартов ИСО/TС 80004 и устанавливает термины и определения понятий в области нанотехнологий, относящихся к характеристикам нанообъектов и методам их определения
Опубликован Официальное издание. М.: Стандартинформ, 2016 год
Утверждён в Росстандарт


ГОСТ Р 56647-2015/ISO/TS 80004-6:2013

     

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАНОТЕХНОЛОГИИ

Часть 6

Характеристики нанообъектов и методы их определения. Термины и определения

Nanotechnologies. Part 6. Characteristics of nano-objects and methods for determination. Terms and definitions



ОКС 07.030

        01.040.07

Дата введения 2016-04-01

     

Предисловие

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении" (ВНИИНМАШ) на основе собственного перевода на русский язык англоязычной версии международного документа, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 441 "Нанотехнологии"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 20 октября 2015 г. N 1586-ст

4 Настоящий стандарт идентичен международному документу ИСО/ТС 80004-6:2013* "Нанотехнологии. Словарь. Часть 6. Характеристики нанообъектов" (ISO/TS 80004-6:2013 "Nanotechnologies - Vocabulary - Part 6: Nano-object characterization", IDT).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.


Наименование настоящего стандарта изменено относительно наименования указанного международного документа для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5)

5 ВВЕДЕН ВПЕРВЫЕ


Правила применения настоящего стандарта установлены в ГОСТ Р 1.0-2012** (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение


Методы измерений и современные приборы позволили открыть мир нанотехнологий. Определив характеристики, можно понять свойства и функциональную направленность применения нанообъектов.

Для определения характеристик нанообъектов важно взаимодействие специалистов и ученых, осуществляющих свою деятельность в различных областях, например материаловедении, биологии, химии, физике, а также имеющих различный опыт работы, как экспериментальной, так и теоретической. Информация о характеристиках нанообъектов и возможности их определения необходима и для представителей проверяющих органов, и специалистов в области токсикологии. С целью обеспечения правильного понимания специалистами информации о характеристиках нанообъектов, а также для обмена сведениями о результатах измерений необходимо уточнение понятий и установление стандартизованных терминов и соответствующих определений.

В настоящем стандарте термины распределены по следующим разделам:

- раздел 2 "Основные термины и определения";

- раздел 3 "Термины и определения понятий, относящихся к размерам нанообъектов и методам их определения";

- раздел 4 "Термины и определения понятий, относящихся к методам химического анализа";

- раздел 5 "Термины и определения понятий, относящихся к методам определения других характеристик нанообъектов".

Наименования этих разделов сформулированы только для своеобразного руководства по поиску терминов в настоящем стандарте, так как некоторые термины относятся к методам, с помощью которых можно определить более одной характеристики нанообъектов, и их можно поместить в другие разделы стандарта. В подразделе 3.1 приведены основные термины раздела 3, которые использованы в определениях других терминов данного раздела, в том числе терминов, относящихся к устройствам, применяемым для определения характеристик нанообъектов.

Большинство методов предусматривает проведение измерений в специальных условиях, включая и соответствующую подготовку исследуемых объектов, например необходимость размещения нанообъектов на специальной поверхности, в жидкой среде или вакууме, что может повлечь за собой изменение характеристик нанообъектов.

Порядок расположения терминов, относящихся к методам определения характеристик нанообъектов, в настоящем стандарте не указывает на преимущественное применение определенных методов, и перечень этих терминов не является исчерпывающим. Методы, термины которых установлены в настоящем стандарте, более распространены, и их чаще применяют для определения тех или иных характеристик нанообъектов, чем другие. В таблице 1 приведены наиболее распространенные методы, применяемые для определения характеристик нанообъектов.


Таблица 1 - Наиболее распространенные методы, применяемые для определения характеристик нанообъектов

Характеристика

Методы

Размер

Атомно-силовая микроскопия (АСМ), центробежное осаждение частиц в жидкости (ЦОЖ), система анализа дифференциальной электрической подвижности частиц (САДЭП), динамическое рассеяние света (ДРС), растровая электронная микроскопия (РЭМ), анализ траекторий движения частиц (АТДЧ), просвечивающая электронная микроскопия (ПЭМ)

Форма

Атомно-силовая микроскопия (АСМ), растровая электронная микроскопия (РЭМ), просвечивающая электронная микроскопия (ПЭМ)

Площадь поверхности

Метод Брунауэра, Эммета и Теллера (метод БЭТ)

Химические характеристики поверхности объекта

Масс-спектрометрия вторичных ионов (МСВИ), рентгеновская фотоэлектронная спектроскопия (РФЭС)

Химический состав объекта

Масс-спектрометрия с индуктивно связанной плазмой (ИСП-МС), спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия)

Электрокинетический потенциал частиц в суспензии

Определение дзета-потенциала


Настоящий стандарт предназначен для применения в качестве основы для разработки других стандартов на термины и определения в области нанотехнологий, затрагивающих вопросы определения характеристик нанообъектов.

Установленные в настоящем стандарте термины расположены в систематизированном порядке, отражающем систему понятий в области нанотехнологий, относящуюся к характеристикам нанообъектов и методам их определения.

Для каждого понятия установлен один стандартизованный термин.

Нерекомендуемые к применению термины-синонимы приведены в круглых скобках после стандартизованного термина и обозначены пометой "Нрк".

Термины-синонимы без пометы "Нрк" приведены в качестве справочных данных и не являются стандартизованными.

Приведенные определения можно при необходимости изменять, вводя в них произвольные признаки, раскрывая значения используемых в них терминов, указывая объекты, относящиеся к определенному понятию. Изменения не должны нарушать объем и содержание понятий, определенных в настоящем стандарте.

В стандарте приведены иноязычные эквиваленты стандартизованных терминов на английском языке.

В стандарте приведен алфавитный указатель терминов на русском языке, а также алфавитный указатель эквивалентов терминов на английском языке.

Стандартизованные термины набраны полужирным шрифтом, их краткие формы, представленные аббревиатурой, и иноязычные эквиваленты - светлым, синонимы - курсивом*.

________________

* В бумажном оригинале обозначения и номера стандартов и нормативных документов приводятся обычным шрифтом, кроме отмеченного в разделе "Предисловие" знаком "**". - Примечание изготовителя базы данных.    

     1 Область применения


Настоящий стандарт является частью серии стандартов ИСО/ТС 80004 и устанавливает термины и определения понятий в области нанотехнологий, относящихся к характеристикам нанообъектов и методам их определения.

     2 Основные термины и определения

2.1

нанодиапазон: Диапазон линейных размеров приблизительно от 1 до 100 нм.

nanoscale

Примечания

1 Верхнюю границу этого диапазона принято считать приблизительной, так как, в основном, уникальные свойства нанообъектов за ней не проявляются.

2 Нижнее предельное значение в этом определении (приблизительно 1 нм) введено для того, чтобы исключить из рассмотрения в качестве нанообъектов или элементов наноструктур отдельные атомы или небольшие группы атомов.


[ИСО/ТС 27687:2008, статья 2.1]


2.2

нанообъект: Материальный объект, линейные размеры которого по одному, двум или трем измерениям находятся в нанодиапазоне (2.1).

nano-object

Примечание - Данный термин распространяется на все дискретные объекты, линейные размеры которых находятся в нанодиапазоне.


[ИСО/ТС 80004-1:2010, статья 2.5]


2.3

наночастица: Нанообъект (2.2), линейные размеры которого по всем трем измерениям находятся в нанодиапазоне (2.1).

nanoparticle

Примечание - Если по одному или двум измерениям размеры нанообъекта значительно больше, чем по третьему измерению (как правило, более чем в три раза), то вместо термина "наночастица" можно использовать термины "нановолокно" (2.6) или "нанопластина" (2.4).


[ИСО/ТС 27687:2008, статья 4.1]


2.4

нанопластина: Нанообъект (2.2), линейные размеры которого по одному измерению находятся в нанодиапазоне (2.1), а размеры по двум другим измерениям значительно больше.

nanoplate

Примечания

1 Наименьший линейный размер - толщина нанопластины.

2 Размеры по двум другим измерениям значительно больше и отличаются от толщины более чем в три раза

3 Наибольшие линейные размеры могут находиться вне нанодиапазона.


[ИСО/ТС 27687:2008, статья 4.2]


2.5

наностержень: Твердое нановолокно (2.6).

[ИСО/ТС 27687:2008, статья 4.5]

nanorod


2.6

нановолокно: Нанообъект (2.2), линейные размеры которого по двум измерениям находятся в нанодиапазоне (2.1), а по третьему измерению значительно больше.

nanofibre

Примечания

1 Нановолокно может быть гибким или жестким.

2 Два сходных линейных размера по двум измерениям не должны отличаться друг от друга более чем в три раза, а размеры по третьему измерению должны превосходить размеры по первым двум измерениям более чем в три раза.

3 Наибольший линейный размер может находиться вне нанодиапазона.


[ИСО/ТС 27687:2008, статья 4.3]


2.7

нанотрубка: Полое нановолокно (2.6).

[ИСО/ТС 27687:2008, статья 4.4]

nanotube


2.8

квантовая точка: Нанообъект, линейные размеры которого по трем измерениям близки длине волны электрона в материале данного нанообъекта и внутри которого потенциальная энергия электрона ниже, чем за его пределами, при этом движение электрона ограничено во всех трех измерениях.

[ИСО/ТС 27687:2008, статья 4.7]

quantum dot


2.9

частица: Мельчайшая часть вещества с определенными физическими границами.

particle

Примечания

1 Физическая граница также может быть описана как межфазная область взаимодействия (интерфейс).

2 Частица может перемещаться как единое целое.

3 Настоящее общее определение частицы применимо к нанообъектам (2.2).


[ИСО 14644-6:2007, статья 2.102; ИСО/ТС 27687:2008, статья 3.1]


2.10

агломерат: Совокупность слабо связанных между собой частиц (2.9), или их агрегатов (2.11), или тех и других, площадь внешней поверхности которой равна сумме площадей внешних поверхностей ее отдельных компонентов.

agglomerate

Примечания

1 Силы, скрепляющие агломерат в одно целое, являются слабыми и обусловленными, например силами взаимодействия Ван-дер-Ваальса или простым физическим переплетением частиц друг с другом.

2 Агломераты также называют "вторичные частицы", а их исходные составляющие называют "первичные частицы".


[ИСО/ТС 27687:2008, статья 3.2]


2.11

агрегат: Совокупность сильно связанных между собой или сплавленных частиц (2.9), общая площадь внешней поверхности которой может быть значительно меньше вычисленной суммарной площади поверхности ее отдельных компонентов.

aggregate

Примечания

1 Силы, удерживающие частицы в составе агрегата, являются более прочными и обусловленными, например ковалентными связями, или образованными в результате спекания или сложного физического переплетения частиц друг с другом.

2 Агрегаты также называют "вторичные частицы", а их исходные составляющие - "первичные частицы".


[ИСО/ТС 27687:2008, статья 3.3]


2.12

аэрозоль: Дисперсная система, состоящая из твердых или жидких частиц (2.9), взвешенных в газе.

[ИСО 15900:2009, статья 2.1]

aerosol


2.13

суспензия: Жидкая неоднородная система, в которой дисперсной фазой являются мелкие частицы твердого вещества.

[ИСО 4618:2006, статья 2.243]

suspension

     

     3 Термины и определения понятий, относящихся к размерам нанообъектов и методам их определения

     3.1 Термины и определения понятий, относящихся к размерам и форме нанообъектов

3.1.1

размер частицы: Линейный размер частицы (2.9), определенный соответствующими методом и средствами измерений в заданных условиях.

particle size

Примечание - Разные методы анализа основаны на измерении различных физических характеристик частиц. Независимо от характеристик частицы всегда можно определить ее линейные размеры, например эквивалентный диаметр сферической частицы.


[ИСО 26824:2013, статья 1.5]


3.1.2

распределение частиц по размерам: Распределение частиц (2.9) в зависимости от их размеров (3.1.1).

particle size distribution

Примечание - Термин "распределение частиц по размерам" обозначает то же понятие, что и термины "функция распределения частиц по размерам" и "распределение концентрации частиц в зависимости от их размеров" (количественное распределение частиц по размерам получают число измеренных частиц определенного размерного класса к общему количеству измеренных частиц).


[ИСО 14644-1:1999, статья 2.2.4, определение термина изменено]


3.1.3

форма частицы: Внешнее геометрическое очертание частицы (2.9).

[ИСО 3252:1999, статья 1401]

particle shape


3.1.4

аспектное соотношение: Отношение длины частицы (2.9) к ее ширине.

[ИСО 14966:2002, статья 2.8]

aspect ratio


3.1.5

эквивалентный диаметр: Диаметр сферического объекта, оказывающий такое же воздействие на средство измерения для определения распределения частиц по размерам, что и измеряемая частица (2.9).

equivalent diameter

Примечания

1 Физические свойства, к которым относят эквивалентный диаметр, обозначают с помощью соответствующего индекса (ИСО 9276-1:1998 [2]).

2 Для дискретного счета частиц приборами, работающими на принципе рассеяния света, используют эквивалентный оптический диаметр.

3 Другие характеристики материала, такие как плотность, используют для расчета эквивалентного диаметра частицы, например в уравнении Стокса при определении зависимости между размером частицы и временем ее осаждения в жидкости. Значения характеристик материала, используемых для расчета, должны быть представлены дополнительно.

4 С помощью измерительных приборов инерционного типа определяют аэродинамический диаметр. Аэродинамический диаметр - это диаметр сферы плотностью 1000 кг/м, которая имеет такую же скорость осаждения, что и частица с неровной поверхностью.


[ИСО/ТС 27687:2008, статья А.3.3, определение термина изменено]

     

     3.2 Термины и определения понятий, относящихся к методам рассеяния света

3.2.1

радиус инерции: Мера распределения массы объекта вокруг оси, проходящей через его центр, выраженная отношением квадратного корня из момента инерции относительно данной оси к массе объекта.

radius of gyration

Примечание - Для определения характеристик нанообъектов (2.2), например размеров частиц (3.1.1), необходимо определить значение радиуса инерции с помощью методов статического рассеяния света, например малоуглового нейтронного рассеяния (3.2.2) или малоуглового рентгеновского рассеяния (3.2.4).


[ИСО 14695:2003, статья 3.4]

3.2.2 малоугловое нейтронное рассеяние; МНР: Метод исследования объекта, основанный на измерении интенсивности рассеянного пучка нейтронов на объекте при малых значениях углов рассеяния.

small angle neutron scattering; SANS

Примечание - Рекомендуемый диапазон углов рассеяния составляет от 0,5° до 10° и соответствует возможности определения структуры материала, а также определения размеров рассеивающих неоднородностей в диапазоне от 1 до 100 нм. Метод позволяет получать информацию о размерах частиц (2.9) и форме диспергированных в однородной среде частиц.

3.2.3 дифракция нейтронов: Явление упругого рассеяния нейтронов, применяемое для исследования атомной или магнитной структуры вещества.

neutron diffraction

Примечание - В методах измерений, основанных на дифракции нейтронов, регистрируют нейтроны с энергией, примерно совпадающей с энергией падающих нейтронов. С помощью сформированной в процессе исследования дифракционной картины получают информацию о структуре вещества.

3.2.4

малоугловое рентгеновское рассеяние; МРР: Метод исследования объекта, основанный на измерении интенсивности рассеянного рентгеновского излучения, проходящего через объект, при малых значениях углов рассеяния.

small angle X-ray scattering; SAXS

Примечание - Рекомендуемый диапазон углов рассеяния составляет от 0,1° до 10° и соответствует возможности определения структуры макромолекул, а также определения размеров рассеивающих неоднородностей в диапазоне от 5 до 200 нм.


[ИСО 18115-1, статья 3.18]


3.2.5

рассеяние света: Преобразование распределения светового потока на границе раздела двух сред, имеющих разные оптические свойства.

[ИСО 13320:2009, статья 3.1.17]

light scattering

3.2.6 гидродинамический диаметр: Эквивалентный диаметр (3.1.5) частицы (2.9), имеющей то же значение коэффициента диффузии в жидкой среде, что и реальная частица в этой среде.

hydrodynamic diameter

3.2.7 динамическое рассеяние света; ДРС; фотонная корреляционная спектроскопия; ФКС; квазиупругое рассеяние света; KРС: Метод определения размеров частиц (3.1.1) в суспензии (2.13), основанный на анализе изменения интенсивности рассеянного света частицами (2.9), находящихся в броуновском движении, при зондировании исследуемого объекта лазерным лучом.

dynamic light scattering; DLS; photon correlation spectroscopy; PCS; quasi-elastic light scattering; QELS

Примечания

1 Проведя анализ временной зависимости интенсивности рассеянного света, можно определить коэффициент диффузии и, следовательно, размеры частиц, например гидродинамический диаметр (3.2.6), по формуле Стокса-Эйнштейна.

2 Данный метод применяют для определения размеров наночастиц (2.3) и частиц в диапазоне от 1 до 6000 нм. Верхний предел диапазона ограничен наличием броуновского движения и осаждением частиц.

3.2.8 анализ траекторий движения наночастиц; АТДН; анализ траекторий движения частиц; АТДЧ: Метод определения размеров частиц (3.1.1), основанный на исследовании траекторий перемещения облученных сфокусированным пучком лазера частиц (2.9), находящихся в броуновском движении в суспензии (2.13).

nanoparticle tracking analysis; NTA; particle tracking analysis; PTA

Примечания

1 Проведя анализ временной зависимости интенсивности рассеянного света движущихся частиц, можно определить коэффициент диффузии и, следовательно, размеры частиц, например гидродинамический диаметр (3.2.6), по формуле Стокса-Эйнштейна.

2 Данный метод применяют для определения размеров наночастиц (2.3) и частиц в диапазоне от 10 до 2000 нм. Нижний предел диапазона ограничен показателем преломления частиц, а верхний предел диапазона - наличием броуновского движения и осаждением частиц.

     

     3.3 Термины и определения понятий, относящихся к устройствам, применяемым для определения характеристик аэрозольных нанообъектов

3.3.1

счетчик конденсированных частиц; СКЧ: Устройство, измеряющее счетную концентрацию частиц (2.9) в аэрозоле (2.12).

condensation particle counter; CPC

Примечания

1 Диапазон размеров частиц, регистрируемых СКЧ, - от нескольких нанометров до нескольких сотен нанометров.

2 CКЧ можно использовать совместно с классификатором дифференциальной электрической подвижности (КДЭП) (3.3.2).

3 В некоторых случаях СКЧ называют счетчиком ядер конденсации (СЯК).


[ИСО 15900:2009, статья 2.5]


3.3.2

классификатор дифференциальной электрической подвижности частиц; КДЭП: Устройство, распределяющее аэрозольные частицы (2.9) по размерам в соответствии с их электрической подвижностью и регистрирующее частицы только определенных размеров.

differential electrical mobility classifier; DEMC

Примечание - Принцип распределения частиц по размерам в КДЭП основан на уравновешивании электрического заряда каждой частицы с силой ее аэродинамического сопротивления при прохождении через электрическое поле. Электрическая подвижность частиц зависит от их размеров, режимов работы и формы КДЭП. Размер частицы можно определить по числу зарядов на ней.


[ИСО 15900:2009, статья 2.7]


3.3.3

система анализа дифференциальной электрической подвижности частиц; САДЭП: Система, применяемая для измерения распределения субмикронных частиц (2.9) аэрозоля по размерам, состоящая из КДЭП, нейтрализатора, счетчика частиц, соединительных трубок, компьютера и программного обеспечения.

[ИСО 15900:2009, статья 2.8]

differential obility nalysing system; DMAS


3.3.4

электрометр с цилиндром Фарадея; ЭЦФ: Устройство для измерения электрических зарядов аэрозольных частиц (2.9).

Faraday-cup aerosol electrometer; FCAE

Примечание - Цилиндр Фарадея состоит из приемника заряженных аэрозольных частиц, помещенного в экранирующий заземленный каркас и соединенного с электрометром и счетчиком частиц.

[ИСО 15900:2009, статья 2.12, определение термина изменено]

      

     3.4 Термины и определения понятий, относящихся к методам разделения веществ

3.4.1 проточное фракционирование в силовом поле; ПФП: Метод разделения и анализа частиц (2.9), основанный на явлении распределения частиц суспензии (2.13), пропускаемой через узкий канал, в соответствии с их размерами и подвижностью под действием внешнего силового поля.

field low fractionation; FFF

Примечания

1 Силовое поле может быть различной природы, например гравитационным, центробежным, электрическим, магнитным.

2 В процессе ПФП или после его завершения с помощью соответствующего устройства определяют размеры нанообъектов (2.2) и их распределение по размерам.

3.4.2 центробежное осаждение частиц в жидкости; ЦОЖ; дифференциальное центрифугирование; ДЦ: Метод разделения частиц жидкости в зависимости от их размеров и плотности под действием центробежных сил в сепарирующем роторе центрифуги.

centrifugal liquid sedimentation; CLS; differential centrifugal sedimentation; DCS

Примечание - В зависимости от плотности частиц (2.9) с помощью ЦОЖ можно выделить частицы размером от 2 нм до 10 мкм для дальнейшего определения их размеров и распределения частиц по размерам (3.1.2). ЦОЖ обеспечивает одновременное выделение частиц, отличающихся друг от друга по размерам не более чем на 2%.

3.4.3

гель-проникающая хроматография; ГПХ: Вид жидкостной хроматографии, в котором разделение веществ основано на элюировании молекул определенного гидродинамического объема в колонке хроматографа, заполненной пористым неадсорбирующим материалом, размеры пор которого соответствуют размерам этих молекул.

[ИСО 16014-1:2012, статья 3.1]

size-exclusion chromatography; SEC

Примечание - ГПХ можно применять совместно с методом для определения размеров и распределения по размерам объектов по динамическому рассеянию света (ДРС) (3.2.7).

3.4.4 метод электрочувствительной зоны; метод Коултера: Метод определения распределения частиц по размерам и размеров частиц (2.9), находящихся в растворе электролита, основанный на измерении импульса электрического напряжения, возникающего при прохождении частицы через отверстие малого диаметра в непроводящей перегородке (стенке ампулы).

electrical zone sensing; Coulter counter

Примечания

1 Амплитуда импульса напряжения пропорциональна объему частицы, прошедшей через отверстие.

2 Прохождение частицы через отверстие происходит под действием давления потока жидкости (электролита) или электрического поля.

3 Для определения размеров нанообъектов (2.2) необходимо, чтобы размер отверстия соответствовал размерам нанодиапазона (2.1).

     

     3.5 Термины и определения понятий, относящихся к методам микроскопии


В данном подразделе в кратких формах терминов, представленных аббревиатурой, буква "М" означает "микроскопия" или "микроскоп" в зависимости от контекста.

Закупки не найдены
Свободные
Р
Заблокированные
Р
Роль в компании Пользователь

Для продолжения необходимо войти в систему

После входа Вам также будет доступно:
  • Автоматическая проверка недействующих стандартов в закупке
  • Создание шаблона поиска
  • Добавление закупок в Избранное