1
Доступно поисковых запросов: 1 из 2
Следующий пробный период начнётся: 09 февраля 2023 в 15:09
Снять ограничение

ГОСТ Р 56762-2015

Композиты полимерные. Метод определения влагопоглощения и равновесного состояния
Действующий стандарт
Проверено:  01.02.2023

Информация

Название Композиты полимерные. Метод определения влагопоглощения и равновесного состояния
Дата актуализации текста 07.08.2016
Дата актуализации описания 01.01.2023
Дата издания 31.05.2016
Дата введения в действие 01.01.2017
Область и условия применения Настоящий стандарт устанавливает метод определения влагопоглощения или свойств десорбции в направлении «сквозь толщину» полимерных композитов с учетом однофазной диффузии по закону Фика для твердых материалов в виде образцов плоской и искривленной формы. Также настоящий стандарт устанавливает метод проведения кондиционирования образцов для испытаний другими методами, заключающийся в доведении до состояния преимущественно свободного от влаги, или до равновесного состояния влажности в стандартной атмосфере, или условиях отличных от лабораторных. Также настоящий стандарт устанавливает методы определения потерь влаги при испытании в условиях повышенных температур и потерь влаги при тепловом воздействии после удаления из условий, в которых поддерживается температурно-влажностный режим, например в ходе операций присоединения тензометрических датчиков
Опубликован Официальное издание. М.: Стандартинформ, 2016 год
Утверждён в Росстандарт

     
ГОСТ Р 56762-2015

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОМПОЗИТЫ ПОЛИМЕРНЫЕ

Метод определения влагопоглощения и равновесного состояния

Polymer composites. Method for determination of moisture absorption and equilibrium conditioning



ОКС 83.080

Дата введения 2017-01-01

     

Предисловие

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт стандартизации материалов и технологии" (ФГУП "ВНИИ СМТ") совместно с ОАО "НПО "Стеклопластик" при участии Объединения юридических лиц "Союз производителей композитов" на основе аутентичного перевода на русский язык указанного в пункте 4 стандарта АСТМ, который выполнен ТК 497

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 497 "Композиты, конструкции и изделия из них"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 24 ноября 2015 г. N 1964-ст

4 Настоящий стандарт является модифицированным по отношению к стандарту АСТМ Д5229/Д5229 M-12 "Стандартный метод испытания свойств влагопоглощения и равновесного состояния композитных материалов с полимерной матрицей" (ASTM D5229/D5229 M-12 "Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials"). При этом дополнительные слова, фразы, ссылки, включенные в текст настоящего стандарта для учета потребностей национальной экономики Российской Федерации, выделены курсивом.

________________

Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей;

В оригинале обозначения и номера стандартов и нормативных документов в разделах "Предисловие", 7 "Проведение испытаний", приложениях ДБ и ДВ приводятся обычным шрифтом; отмеченные в разделе "Предисловие" знаком "**" и остальные по тексту документа выделены курсивом. - Примечания изготовителя базы данных.


Наименование настоящего стандарта изменено относительно наименования указанного стандарта АСТМ для приведения в соответствие с ГОСТ Р 1.5-2012 (подраздел 3.5).

Из пункта 5.6 исключена ссылка на стандарт MIL-B-131, устанавливающий требования к водонепроницаемому материалу, в связи с тем, что данные технические условия не находят применения на территории РФ, данная ссылка носит справочный характер

5 ВВЕДЕН ВПЕРВЫЕ


Правила применения настоящего стандарта установлены в ГОСТ Р 1.0-2012** (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии (www.gost.ru)

Введение


Значимая оценка и сопоставление данных о реакции полимерной матрицы композита на влагопоглощение может производиться только тогда, когда профиль влажности материала приводится к равномерному значению по толщине. В настоящем стандарте приведен метод, применяемый для кондиционирования с целью достижения равновесного состояния, который, в отличие от других методов, может быть применен в случае наличия влаги, которая формируется жидкостью, отличной от воды, и который, помимо того, может предусматривать свойства влагопоглощения, которые необходимы для анализа однофазной диффузии влаги по закону Фика в отношении таких материалов.

     1 Область применения

1.1 Настоящий стандарт устанавливает метод определения влагопоглощения или свойств десорбции в направлении "сквозь толщину" полимерных композитов с учетом однофазной диффузии по закону Фика для твердых материалов в виде образцов плоской и искривленной формы. Также настоящий стандарт устанавливает метод проведения кондиционирования образцов для испытаний другими методами, заключающийся в доведении до состояния, преимущественно свободного от влаги, или до равновесного состояния влажности в стандартной атмосфере, или в условиях, отличных от лабораторных. Также настоящий стандарт устанавливает методы определения потерь влаги при испытании в условиях повышенных температур и потерь влаги при тепловом воздействии после удаления из условий, в которых поддерживается температурно-влажностный режим, например в ходе операций присоединения тензометрических датчиков.

Настоящие методы применимы для слоистых материалов с полимерной матрицей и других материалов, которые соответствуют положениям 1.2.

1.2 Вычисление константы диффузионной способности влаги по толщине материала в методе A (7.4) основано на модели однофазной диффузии по закону Фика применительно к материалу с характеристикой влагопоглощения постоянного по толщине образца. Состоятельность уравнений, которые используют в методе A для оценки константы диффузионной способности влаги для материала, для которого динамика влагопоглощения не известна до начала испытаний, не важна, так как результаты испытаний сами показывают соответствие материала модели диффузии однофазного типа по закону Фика. Требованиям модели однофазного закона Фика соответствует армированный полимерный композит при температуре ниже температуры стеклования. В то время как двухфазные матрицы, к примеру, ударопрочные эпоксипласты, могут соответствовать модели влагопоглощения на основе нескольких фаз. Таким образом, методы испытаний могут быть использованы для многофазных материалов, но расчеты, проводимые с целью определения константы диффузионной способности влаги для метода A, применимы только к однофазным материалам.

Далее, в разделе 6, представлено описание иных примеров материалов и условий для испытаний, которые могут не соответствовать данным требованиям.

1.3 Оценка равновесного состояния в материале по методу A не подразумевает соответствия модели однофазной диффузии и может быть применена для других материалов.

1.4 Методы, установленные в настоящем стандарте, и итоговая обработка данных могут быть выполнены с помощью автоматизированной аппаратуры.

1.5 В настоящем стандарте не предусмотрено рассмотрение в полном объеме всех вопросов обеспечения техники безопасности, связанных с его применением. Пользователь данного стандарта несет ответственность за обеспечение соответствующих мер техники безопасности и охраны труда, а также определяет целесообразность применения законодательных ограничений перед его применением.

     2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 15139-69 Пластмассы. Методы определения плотности (объемной массы)

ГОСТ 24888-81 Пластмассы, полимеры и синтетические смолы. Химические наименования, термины и определения

ГОСТ 29127-91 (ИСО 7111-87) Пластмассы. Термогравиметрический анализ полимеров. Метод сканирования по температуре

ГОСТ 32794-2014 Композиты полимерные. Термины и определения
     
     
ГОСТ Р 56679-2015 Композиты полимерные. Метод определения пустот
     
      
ГОСТ Р 56682-2015 Композиты полимерные. Методы определения объема матрицы, армирующего наполнителя и пустот

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

     3 Термины и определения


В настоящем стандарте применены термины по ГОСТ 24888, ГОСТ 32794 и следующие термины с соответствующими определениями:

Примечание - В случае расхождения в терминах, ГОСТ 32794 имеет приоритет перед другими документами.

3.1 критерий точности n: Наибольшее изменение среднего влагосодержания в образце за определенный промежуток контрольного периода, который является допустимым для установления действующего равновесного состояния влажности (также см. среднее влагосодержание, равновесное состояние влажности и контрольный период).

3.2 среднее влагосодержание М, %: Средний объем поглощенной материалом влаги принимают как соотношение массы влаги имеющейся в материале, к массе материала после сушки в печи, выраженное в процентах

,                                                              (1)


где W - текущее значение массы образца, г;

W - масса образца после сушки в печи, г.

3.3 диффузия по закону Фика: Модель влагопоглощения материала и его десорбция, которая соответствует второму закону Фика, выраженному в формуле

,                                                               (2)


где с - концентрация влаги;

D - константа диффузионной способности влагопоглощения;

t - время, ч или день;

z - глубина диффузии влаги, мм.

3.4 температура стеклования, T []: Приблизительное значение в диапазоне температур, при котором происходит обратимое изменение из высокоэластичного или вязкотекучего состояния на состояние относительно хрупкого твердого тела, в аморфном полимере или на аморфных участках частично кристаллического полимера.

Примечание - Температура стеклования многих композитов с полимерной матрицей снижается в присутствии абсорбированной влаги.

3.5 влага: Жидкая среда (вода, авиационный керосин, морская вода или любая другая жидкость), которая или в относительно малом количестве диффундирует и рассеивается в виде газовой или паровой фазы, конденсируется на поверхности в виде заметной невооруженным взглядом росы, или же которая присутствует в достаточном количестве для погружения.

Примечание - Словарное определение влаги в отношении данного метода испытаний более широко и охватывает не только пары жидкости и конденсат, но и саму жидкость в больших объемах, например, при погружении.

3.6 концентрация влаги, с: Абсолютное значение поглощенной материалом влаги, которое определяется в виде отношения массы влаги к удельному объему.

3.7 коэффициент диффузии влаги, D: Свойство материала, которое характеризует темп, при котором в материале происходит поглощение или десорбция влаги.

Примечание - В материалах, подчиняющихся закону Фика, данное свойство имеет относительную независимость от степени воздействия влаги. Коэффициент диффузии влаги в значительной степени зависит от температуры.


Диффузия влаги может быть анизотропного типа; символом z в подстрочном регистре указывается значение направления "сквозь толщину" для динамики анизотропной диффузии.

3.8 равновесное состояние влажности: Условие, которое достигается материалом при отсутствии в дальнейшем какого бы то ни было значительного изменения содержания влаги при изменении условий окружающей среды.

Равновесное состояние влажности разделяют на абсолютное и действующее.

Абсолютное равновесное состояние влажности подразумевает отсутствие измеряемых изменений влагосодержания, при этом действующее равновесное состояние влажности подразумевает возможность незначительного изменения в среднем влагосодержании материала (критерий точности) за указанный временной промежуток (контрольный период) (также см. критерий точности, среднее влагосодержание и контрольный период).

Примечание - Значения действующего равновесного состояния влажности достаточно для большинства случаев конструирования. Если не указано иное, то при наличии ссылок на равновесное состояние влажности в настоящем стандарте имеется в виду действующее равновесное состояние влажности, количественное определение которого приведено в 7.2. Кроме того, равновесное состояние влажности может также подразделяться на статичное, когда полностью отсутствует влагоперенос по поверхностям, или на динамичное, когда имеется влагоперенос, но итоговая сумма для конкретного материала является нулевой. В настоящем стандарте не предусматривается возможность проведения различия между указанными двумя типами равновесного состояния влажности.

3.9 равновесное содержание влаги (равновесное влагосодержание) М, %: Максимальное содержание поглощенной влаги, которое может содержать материал при условии равновесного состояния влажности в отношении конкретного уровня воздействия влажности, выражаемое в виде процентного соотношения к массе сухого материала (также см. насыщенность влагой).

Примечание - В полимерных композитах данное свойство имеет относительную независимость от температуры (и следовательно от коэффициента диффузии влаги), но зависит от уровня воздействия влажности. В целях настоящего стандарта равновесное содержание влаги M принимают равным среднему влагосодержанию при действующем равновесном состоянии влажности M.

3.10 уровень воздействия влажности: Мера или характеристика степени для условий кондиционирования относительно объема имеющейся жидкости или пара (также см. влага и относительный уровень пара).

3.11 насыщенность влагой: Равновесное содержание влаги при максимально возможном уровне воздействия влажности, при котором в материале содержится наибольшее возможное количество поглощенной влаги (также см. 3.9).

3.12 просушенность в печи: Состояние материала, который был подвергнут сушке в соответствии с методом D настоящего стандарта, пока не было получено равновесное состояние влажности.

3.13 контрольный период: Промежуток времени для измерения массы, который применяется для того, чтобы установить действующее равновесное состояние влажности в материале (также см. 3.1,3.2 и 3.9).

Примечание - Незначительное изменение среднего влагосодержания (критерий точности) материала в течение контрольного периода демонстрирует наличие действующего равновесного состояния влажности.

3.14 относительный уровень пара (паров), %: Соотношение имеющегося давления пара к давлению насыщенного пара в условиях одинаковых температур. Применяют только для газовой фазы текучей среды. Если идет речь о парах воды, данный термин эквивалентен термину относительная влажность (также см. 3.10).

3.15 стандартная атмосфера: Условия окружающей среды с температурой (23±2)°C и относительной влажностью (50±10)%.

3.16 стандартно кондиционированный образец: Состояние образца, при котором достигнуто действующее равновесное состояние влажности при номинальной относительной влажности 50% (относительная влажность стандартной атмосферы) в соответствии с методом С настоящего стандарта.

3.17 температура испытаний: Температура окружающей среды, используемая в методах A-E, Y, Z.

Примечание - В целях настоящего стандарта данное положение отличается от температуры окружающей среды, которую используют в ходе дальнейших испытаний материалов для оценки их свойств.

3.18 дублер образца (технологический образец): Образец, аналогичный образцу, который требуется испытать, имеющий одинаковый материал и толщину, а также - соответствующий размер (но без креплений), который используют при кондиционировании для расчета содержания влаги для конфигурации образца (например, уже закрепленная деталь механизма, или же образец, который не соответствует требованиям по массе), который не может быть корректно измерен иным образом в соответствии с настоящим стандартом.

     4 Сущность метода

4.1 Настоящий метод испытаний предполагает гравиметрический способ анализа, при котором при помощи измерения общего изменения массы контролируют с течением времени изменение среднего влагосодержания образца, подвергаемого с обеих сторон установленным условиям среды. Настоящий стандарт содержит описание ряда методов для испытаний.

4.1.1 Метод А устанавливает определение двух свойств материала по отношению к диффузии влаги по закону Фика - коэффициент диффузии влаги и равновесное содержание влаги. Остальные методы описывают кондиционирование материала до приведения его к конкретным условиям среды.

4.1.2 Метод В устанавливает кондиционирование образцов в условиях влажности, отличных от условий окружающей среды, при заранее указанном постоянстве условий кондиционирования до начала других типов испытаний. Для указания условий кондиционирования, продолжительности кондиционирования, а также методов контроля изменения массы используют деление на методы и применение для них шифров-обозначений.

4.1.3 Метод С устанавливает кондиционирование образцов в условиях окружающей среды до достижения уровня номинальной относительной влажности 50%, до начала других типов испытаний.

4.1.4 Метод D устанавливает кондиционирование (сушку) образцов материалов с доведением до состояния, преимущественно свободного от влаги.

4.1.5 Метод E устанавливает кондиционирование в два и более последовательных этапа при помощи метода В.

4.1.6 Метод Y устанавливает определение количества потерь влаги в образцах, которые после кондиционирования были подвергнуты другим условиям (например, нагреванию для крепления тензодатчиков).

4.1.7 Метод Z устанавливает определение количества потерь влаги в образцах, которые прошли кондиционирование, при нагреве до температуры проведения механического испытания и поддержания на уровне температуры испытания на период механического испытания.

4.2 В методе А контролируют повышение влажности в массовых процентах образца(ов) с небольшой толщиной в зависимости от времени, образцы поддерживают в стабильной атмосфере при известных значениях температуры и уровня воздействия влаги, до того момента, пока тонкие образцы не достигнут действующего равновесного состояния влажности, а толстые образцы не пройдут интервал линейного увеличения влажности. На основании данных, полученных на основе двух образцов различной толщины, определяют равновесное содержание влаги M, а также устанавливают скорость абсорбции влаги (в одном направлении) и рассчитывают коэффициент диффузии влаги по толщине материала D.

4.3 В методе В образец (необязательно образец, испытанный по методу А) кондиционируют аналогично методу А в стабильной атмосфере при заданной температуре и уровне воздействия влаги до достижения действующего равновесного состояния влажности.

4.4 В методе С образец выдерживают в стабильной атмосфере при заданной температуре и относительной влажности 50% до достижения действующего равновесного состояния влажности.

4.5 В методе D образец выдерживают в печи с циркуляцией воздуха на уровне заданной повышенной температуры до достижения действующего равновесного состояния влажности.

4.6 В методе E образец кондиционируют в два или несколько последовательных этапа в стабильной атмосфере, с условиями, отличными от окружающих.

4.7 В методе Y образец кондиционируют сначала до равновесного состояния влажности при помощи метода В, а затем подвергают воздействию температуры окружающей среды, после чего происходит ее повышение на заданное время, затем образец вновь кондиционируют до равновесного состояния влажности.

4.8 В методе Z образец сначала кондиционируют до равновесного состояния влажности при помощи метода В, а затем подвергают воздействию условиями, аналогичным условиям, которым подвергают образцы, предназначенные для испытаний (номинальное линейное увеличение и время выдержки, а также дополнительное время удержания для имитации длительности испытания).

4.9 Влияющие факторы

4.9.1 Расчет коэффициента диффузии влаги по толщине материала по методу А предполагает соответствие диффузии влаги в материале образца модели однофазной диффузии по закону Фика. Состоятельность уравнений, которые используют в методе A для оценки коэффициента диффузии влаги, для материала, для которого динамика влагопоглощения не известна до начала испытаний, не важна, так как результаты испытаний сами показывают соответствие материала модели диффузии однофазного типа по закону Фика. Как указывается в исследованиях, диффузия, которую можно четко классифицировать как диффузию по закону Фика, должна удовлетворять трем нижеследующим условиям:

4.9.2 Кривые поглощения и десорбции должны быть преимущественно линейны до 60% равновесного содержания влаги;

4.9.3 За пределами изначального линейного участка кривые поглощения и десорбции должны быть вогнуты по отношению к оси абсцисс до достижения равновесного состояния влажности;

4.9.4 Для одинаковых типов и уровней воздействия условий окружающей среды кривые поглощения образцов различной толщины, изготовленных из одного материала, должны преимущественно совпадать при наложении, если каждая кривая будет нанесена на график в форме нормализованной кривой поглощения, при которой ось абсцисс имеет размерность , а не .

4.9.5 Данные условия должны выполняться неукоснительно, и существует вероятность того, что многие конструкционные материалы могут не удовлетворять им в полной мере. Может быть затруднительно подтвердить экспериментальным путем выполнение данных условий в отношении конкретных материалов, и решение относительно того, насколько строго рассматривать данные условия в отношении конкретного материала испытаний, должен принимать сам пользователь. К примеру, в сложных условиях цикла полной сорбции/десорбции может происходить повреждение материала, при этом имеет место растрескивание и появление диффузии, не соответствующей закону Фика, тем самым оценка таких условий становится невозможной.

4.9.6 Тем не менее, существует ряд материалов или условий испытаний, которые, как известно, имеют возможность нарушения одного или нескольких предположений, которые использованы в настоящем методе испытаний, или которые потенциально вызывают поведение материала, отличное от закона Фика. В их число входят:

- материалы с волокнами, распределенными в трех измерениях и влияющие на механизм диффузии влаги посредством, например, капиллярного затекания вдоль линии сопряжения волокна с матрицей, как-то: материалы со швом, проходящим по их толщине, или некоторые материалы, изготовленные литьем под давлением;

- материалы, имеющие значительный объем образования поверхностных трещин;

- системы материалов, которые продемонстрировали динамику, отличную от модели по закону Фика, или системы, которые имеют механизмы многофазной диффузии влаги;

- системы материалов, которые продемонстрировали наличие коэффициента диффузии влаги, который в значительной степени зависит от концентрации влаги;

- системы материалов, которые продемонстрировали наличие коэффициента диффузии влаги, который в значительной степени зависит от времени;

- системы материалов, которые продемонстрировали наличие коэффициента диффузии влаги, который в значительной степени зависит от величины напряжения, а также системы, которые используют материалы, имеющие слои, и характеризующиеся большими значениями остаточного напряжения;

- системы материалов, которые содержат большое количество пустот (пористость) или имеющие неравномерное распределение пустот; влага (в жидкой или газообразной форме) может заполнить пустоты, приводя при этом к некорректным измерениям объема влаги, который поглотил материал, и тем самым - к изъятию образцов из кондиционируемой среды раньше намеченного срока;

- применение испытательного оборудования, из-за которого существует значительный градиент температуры в образце либо по толщине, либо по поверхности образца, поскольку коэффициент диффузии влаги, как правило, зависит от температуры;

- проведение испытаний с температурой, выше температуры стеклования любого компонента материала или фазового компонента в композитном материале, приведет к получению динамики диффузии влаги по модели многофазного типа или по типу, отличному от закона Фика, или же все вместе;

- материалы, испытывающие потерю влаги при кондиционировании (например, материалы, в состав которых входят водо- или жидкорастворимые компоненты);

- материалы, отверждение которых усиливается в течение времени воздействия воды или водяного пара (например, некоторые фенопласты).

4.9.7 Для материалов, которые имеют значительную скорость диффузии влаги или малое значение равновесного содержания влаги (или оба фактора), временные интервалы для периодических взвешиваний могут быть очень короткими (порядка минуты или часа), по этой причине уделяют чрезвычайно пристальное внимание при взвешивании калибровке и регулировке климатических камер во избежание получения измерений с большой погрешностью. Наиболее удобным способом снижения чувствительности метода испытаний по отношению к данному фактору является увеличение толщины образца.

4.9.8 Определение действующего равновесного содержания влаги предусматривает небольшой прирост во влагопоглощении по окончании испытаний.

Вследствие этого содержание влаги в образцах, прошедших кондиционирование, не может являться исключительно репрезентативным фактором для оценки воздействия в течение длительного периода. Среди тех материалов, которые могут показать значительный повторяющийся прирост во влаге после достижения действующего равновесия, материалы, которые имеют излишнюю пористость, концентрированные смолистые включения, а также складчатые волокна. Если в конкретном случае важно рассмотреть достаточно длительный период воздействия, рекомендуется выполнять кондиционирование в течение времени, сопоставимого с временем воздействия при эксплуатации изделия, или же по меньше мере - учитывать исследования влагопоглощения материала образца на длительный срок после достижения действующего равновесия, как указано в настоящем стандарте.

     5 Оборудование

5.1 Весы

Весы аналитические, обеспечивающие точность измерений, указанную в таблице 1.

Примечание - Требования к точности взяты из определения о действующем равновесном содержании влаги [уравнение (7)] и массы образца, согласно А.2.10 приложения А.


Таблица 1 - Точность измерений весов

Масса образца, г

Требования к точности весов, мг

Более или равно 5, но менее 50

0,1

Более или равно 50

1,0

5.2 Печь или камера вакуумной сушки

Для печи с циркуляцией воздуха необходимо наличие возможности поддержания требуемых температур в пределах ±3°C. Также разрешается использование камеры вакуумной сушки или вакуумной печи.

5.3 Камера кондиционирования

5.3.1 Используют камеры кондиционирования, поддерживающие требуемые температуры в пределах ±3°C. Камеры контролируют либо постоянно с использованием автоматики, вручную с периодическими интервалами.

5.3.2 Для поглощения путем воздействия паров требуется наличие паровой камеры, которая обеспечивает возможность регулировки температуры и уровня пара и поддержания требуемого относительного уровня пара до ±3%.

5.3.3 Для поглощения путем погружения в жидкость требуется жидкая ванна с возможностью регулировки температуры.

Примечания

1 Несмотря на то, что во многих новых моделях предусмотрены блоки управления на основе полупроводников, подавляющее большинство камер кондиционирования регулируют влажность внутри камеры при помощи "сухого термометра" (фактическая температура) и "смоченного термометра" (температура с пониженной влажностью), показания которых пересчитывают в эквивалентную относительную влажность с помощью таблицы или алгоритма, который предоставляет предприятие-изготовитель. Способность данных камер кондиционирования регулировать относительную влажность зависит от точности показаний термометра. В особенности важно в таких камерах кондиционирования проводить регулярную чистку водного бака, заменять смазочный фитиль, а также сохранять надлежащий контакт между фитилем и термометром со смоченным шариком. Камеры кондиционирования, которые регулируют влажность внутри камеры при помощи температуры "сухого термометра", а также "дифференциальное значение" разницы между значением температуры "сухого термометра" и температуры "смоченного термометра", как правило, имеют усовершенствованное управление относительной влажностью в камере кондиционирования по сравнению с теми, которые регулируют влажность внутри камеры при помощи "сухого термометра" и "смоченного термометра".

2 В результате перебоя в водоснабжении происходит смена условий кондиционирования в сторону уменьшения уровня воздействия влажности, и зачастую это приводит к значительной задержке достижения требуемых условий кондиционирования, поэтому рекомендуется использовать систему мониторинга энерго- и водоснабжения в режиме реального времени, а также систему сигнализации. Система сигнализации должна предусматривать возможность связи с персоналом лаборатории, который находится вне площадки, на случай нарушения нормального функционирования. Еще одна рекомендация включает в себя использование системы прекращения нагрева в камере, если обнаруживается сбой в водоснабжении или нарушение режима влажности.

5.4 Микрометры

Для измерения толщины образца используют двухшариковые микрометры с номинальным диаметром шарика 5 мм и погрешностью измерений не более 0,1% толщины образца. Для типовых размеров образцов требуется погрешность измерений не более 2,5 мкм. Для измерения длины и ширины образца используют микрометры с плоскими измерительными поверхностями или калибр с погрешностью измерений до 25 мкм.

5.5 Десикатор

Используют чистый сухой десикатор для доведения образцов после сушки в печи до температуры в лаборатории.

5.6 Пакет для образцов

Герметично закрываемый гибкий влагонепроницаемый пакет (или другая подходящая герметично закрываемая упаковка), изготовленная из материала, подходящего для хранения образцов, которые были извлечены из камеры кондиционирования для охлаждения перед началом взвешивания.

5.7 Гигроскопическая ткань

Чистая немочалящаяся гигроскопическая ткань для протирки выделившейся на поверхности или сконденсированной из образцов влаги.

5.8 Перчатки чистые немочалящиеся для использования во время работы с образцами.

5.9 Все применяемые средства измерений должны быть поверены.

     6 Подготовка к проведению испытаний

6.1 Отбор образцов

6.1.1 По методу А проводят испытания не менее одного образца с "малой" и одного образца с "большой" толщиной. Для получения достаточного количества информации рекомендуется по возможности проводить три параллельных испытания.

6.1.2 Методы B-E используют при одновременном кондиционировании группы образцов, изготовленных из одного материала и имеющих одинаковую толщину, в целях последующей оценки образцов и при периодическом взвешивании образцов. При этом требуются оба условия, взвешивают не менее трех образцов или дублеров образцов из группы. Если группа образцов для испытаний не проходила "сушку" до их кондиционирования, то изначальное содержание влаги до кондиционирования можно установить:

а) при сушке дублеров образцов после кондиционирования в соответствии с методом D;

б) при сушке в соответствии с методом D дополнительных трех образцов;

в) если установлено значение коэффициента диффузии влаги и действующего равновесного содержания влаги, используют методы, приведенные в приложении А.3.

Примечание - В некоторых случаях "сухая" масса до кондиционирования до равновесного состояния влажности может не быть равной "сухой" массе после кондиционирования и сушки (см. раздел 6), в этом случае перечисления a) и б) могут быть неэквивалентны. Если ожидают такую ситуацию, то необходимо установить точное изначальное содержание влаги, в таком случае рекомендуется проводить испытания с использованием обоих методов.

6.1.3 Метод Y применяют в тех случаях, когда требуется вынуть образцы из камеры кондиционирования до начала испытаний [к примеру, тогда, когда испытание в условиях повышенных температур требует применения горячего отверждения (при температуре 190 °C) для того, чтобы приклеить тензометр, или во время фиксации датчиков деформаций после кондиционирования до равновесного состояние влажности]. Потерю влаги в течение периода нахождения образца вне камеры кондиционирования оценивают количественно на основании результатов, полученных на не менее чем трех образцах, которые представляют каждую конкретную толщину слоя и материала. Образцы, используемые для механических испытаний, подлежат повторному кондиционированию на срок, который устанавливают исходя из оценки потери влаги.

6.1.4 Метод Z используют при количественной оценке потери влаги в ходе испытаний в условиях повышенных температур на основании результатов, полученных на не менее чем трех образцах. Каждый образец по отдельности представляет один из факторов: материал, толщину слоя материала, геометрические параметры горячего/влажного образца (ширину и длину), а также температуру испытаний. Требуются отдельные образцы для оценки потерь влаги закрепленных и незакрепленных образцов, имеющих одинаковые размеры. Для испытания образцов на потерю влаги не требуется наличие креплений или отверстий для креплений, даже если они представляют закрепленные образцы. При моделировании закрепленных образцов допускается использовать имитацию креплений в целях предотвращения повреждения образцов и имитации теплообмена с креплениями.

6.2 Геометрические параметры образца

6.2.1 Общие сведения

Требования к образцам приведены в таблице 2.

6.2.2 Требование к массе образца

Образцы (в том числе дублеры образцов) должны иметь массу не менее 5,0 г (см А.2.10 приложения A).

Масса образца влияет на требования к точности весов в соответствии с 5.1.


Таблица 2 - Сводная информация о требованиях к геометрическим параметрам образца

Метод A - образец с "большой" толщиной

Методы кондиционирования B-Z

Известен контрольный период t

Известна толщина образца h

1) Максимальную толщину h вычисляют по формуле

.


Если требуется большая толщина образца, то изменяют контрольный период, t. Данное уравнение действует для критериев изменения влаги на уровне 0,02%, указанных в подразделе 7.2; при условии использования другого значения для изменения действующего равновесного состояния влажности см. пп.7.1.8 и приложение А.2

1) Определяют контрольный период. Если данное положение недопустимо, то изменяют толщину образца

2) Устанавливают размер пластины (листа) при помощи уравнения 3 (негерметизированные края)






2) Рассчитывают массу образца из плотности материала известной толщины и его формы. Масса образца должна быть больше или равна 5 г. Если расчетная масса слишком мала или образец имеет зафиксированные крепления или иные детали, которые нарушают положения данной методики испытаний, используют дублер образца

3) Массу образца m, г, вычисляют по формуле

,


где - плотность материала.

Масса образца должна быть больше или равна 5 г. Если расчетная масса слишком мала, то увеличивают размер пластины (листа) (или наращивают толщину образца и увеличивают контрольный период, соответственно)

Известна толщина образца h

1) Определяют контрольный период. При условии недопустимости значения, которое найдено данным способом, изменяют толщину образца

2) Устанавливают размер пластины (листа) при помощи уравнения 2 (негерметизированные края)

3) Массу образца, m, г, вычисляют по формуле

.


Масса образца должна быть больше или равна 5 г. Если расчетная масса слишком мала, то увеличивают размер пластины (листа) (или наращивают толщину образца и увеличивают контрольный период, соответственно)

6.2.3 Толщина образца

Толщина образца вдоль его поверхности не должна изменяться более чем на 5% и должна удовлетворять уравнению (3).

Примечание - Требований по минимальной толщине образца нет. Тем не менее, толщина образца имеет огромное влияние на общее время, требуемое для достижения равновесия, и на контрольный период. Кроме того при разработке образца уделяют внимание макроструктуре композита по направлению его толщины. Если образец имеет толщину гораздо больше, чем материал в конечной форме применения, предусматривают достаточное количество волокон по толщине так, чтобы абсорбционные свойства образца материала могли расцениваться равными абсорбционным свойствам образца, используемого для испытаний. Слоистый материал с небольшой толщиной (даже однослойный) при условии армирования большим количеством волокон, которые имеют малый диаметр по отношению к толщине, может считаться допустимым, если он удовлетворяет другим требованиям к геометрическим параметрам образца. Тем не менее не допускается использовать слоистый материал, армированный волокнами с диаметром, сопоставимым с толщиной слоев. Минимальная рекомендуемая толщина слоистого материала должна быть в 10 раз больше номинального диаметра волокна.

5 закупок
Свободные
Р
Заблокированные
Р
Роль в компании Пользователь

Для продолжения необходимо войти в систему

После входа Вам также будет доступно:
  • Автоматическая проверка недействующих стандартов в закупке
  • Создание шаблона поиска
  • Добавление закупок в Избранное