1
Доступно поисковых запросов: 1 из 2
Следующий пробный период начнётся: 02 октября 2022 в 10:08
Снять ограничение

ГОСТ Р 57154-2016

Техническая диагностика. Мониторинг тепломеханического оборудования АЭС. Расчетно-экспериментальный метод. Общие требования
Действующий стандарт
Проверено:  24.09.2022

Информация

Название Техническая диагностика. Мониторинг тепломеханического оборудования АЭС. Расчетно-экспериментальный метод. Общие требования
Название английское Technical diagnostics. Monitoring of mechanical and heat npp equipment. General requirements
Дата актуализации текста 01.12.2016
Дата актуализации описания 01.01.2021
Дата издания 31.10.2016
Дата введения в действие 01.10.2017
Область и условия применения Настоящий документ устанавливает общие требования к использованию расчетно-экспериментального метода непрерывного мониторинга живучести ответственного тепломеханического оборудования атомных электростанций
Опубликован Официальное издание. М.: Стандартинформ, 2016 год
Утверждён в Росстандарт


ГОСТ Р 57154-2016

Группа Т51

     

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ



Техническая диагностика



МОНИТОРИНГ ТЕПЛОМЕХАНИЧЕСКОГО ОБОРУДОВАНИЯ АЭС РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНЫЙ МЕТОД



Общие требования



Technical diagnostics. Monitoring of mechanical and heat NPP equipment. Calculation experimental method. General requirements

     

ОКС 77.040

Дата введения 2017-10-01

     

Предисловие

1 РАЗРАБОТАН Открытым акционерным обществом "Научно-исследовательский центр контроля и диагностики технических систем" (АО "НИЦ КД")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 132 "Техническая диагностика"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 13 октября 2016 г. N 1389-ст

4 ВВЕДЕН ВПЕРВЫЕ


Правила применения настоящего стандарта установлены в ГОСТ Р 1.0-2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение


В настоящее время одним из наиболее перспективных подходов к оценке технического состояния тепломеханического оборудования атомных электростанций является подход, основанный на использовании расчетно-экспериментального метода непрерывного мониторинга живучести оборудования с применением систем многопараметрического непрерывного мониторинга эксплуатационной повреждаемости (СМНМЭП).

(СМНМЭП) тепломеханического оборудования АЭС представляет собой единый комплекс, связывающий установленные на работающем оборудовании АЭС датчики и расчетный модуль. СМНМЭП обеспечивает возможность осуществления текущей диагностики технического состояния объекта контроля в части оценки накопленной повреждаемости и целостности металла наиболее нагруженных зон. Использование СМНМЭП повышает надежность работы оборудования АЭС и срок его службы.

Все датчики СМНМЭП соединены с модулем сбора и первичной обработки данных, связанным с блоком хранения и передачи данных с установленным на нем программным обеспечением, позволяющим осуществлять дистанционно в автоматическом режиме управление системой, включая сбор, хранение и передачу данных, а также отображение и экспресс-анализ контролируемых параметров в режиме реального времени.

Расчетный модуль включает трехмерную конечно-элементную модель и обеспечивает возможность сопоставления данных мониторинга с фактической термосиловой нагруженностью для всех эксплуатационных режимов. Расчетное ядро модели допускает калибровку по данным измерений, получаемых с помощью контрольных датчиков, установленных в критических зонах.

После верификации по показаниям контрольных датчиков расчетная модель позволяет прогнозировать остаточный ресурс контролируемого оборудования на базе экспериментальных данных непрерывного мониторинга для всех эксплуатационных режимов, определяющих сценарий эксплуатации.

     1 Область применения


Настоящий стандарт устанавливает общие требования к использованию расчетно-экспериментального метода непрерывного мониторинга живучести ответственного тепломеханического оборудования атомных электростанций.

     2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 7.32-91 Система стандартов по информации, библиотечному и издательскому делу. Отчет о научно-исследовательской работе. Структура и правила оформления

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.019-79 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ 12.1.038-82 Система стандартов безопасности труда. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов

ГОСТ 12.2.003-91 Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности

ГОСТ 12.3.002-75 Система стандартов безопасности труда. Процессы производственные. Общие требования безопасности

ГОСТ 27.002-89 Надежность в технике. Термины и определения

ГОСТ 20911-89 Техническая диагностика. Термины и определения

ГОСТ Р ИСО 17359-2009 Контроль состояния и диагностика машин. Общее руководство по организации контроля состояния и диагностирования

ГОСТ Р 53564-2009 Контроль состояния и диагностика машин. Мониторинг состояния оборудования опасных производств. Требования к системам мониторинга

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

     3 Термины, определения и сокращения

3.1 В настоящем стандарте применены термины по ГОСТ 20911, ГОСТ 27.002, а также следующие термины с соответствующими определениями:

3.1.1 ресурс оборудования: Наработка оборудования от пуска до перехода в предельное состояние.

3.1.2 наработка: Период применения оборудования без учета простоев.

3.1.3 живучесть: Способность технических сооружений, оборудования выполнять свои функции, несмотря на полученные в процессе эксплуатации повреждения, либо адаптируясь к новым условиям.

3.1.4 система мониторинга (состояния оборудования): Совокупность процедур, процессов и ресурсов, реализованных с использованием диагностической сети, позволяющая по результатам измерений заданных параметров в заданных точках и наблюдений за работой оборудования получить информацию о текущем техническом состоянии оборудования, опасностях и рисках, связанных с его применением, требуемых действиях обслуживающего персонала и другие сведения, необходимые для реализации установленных предупреждающих мер.

3.1.5 диагностический контроллер (системы мониторинга): Вычислительное устройство, используемое в составе системы мониторинга состояния оборудования, обеспечивающее управление процессом сбора, обработки и накопления информации о состоянии оборудования, передачу ее в диагностическую сеть, взаимодействие с человеком-оператором.

3.1.6 диагностическая станция (системы мониторинга): Часть системы компьютерного мониторинга состояния оборудования, включающая диагностический контроллер и средства отображения, регистрации, предупреждения и взаимодействия системы с человеком-оператором и полевой сетью измерительного оборудования.

3.1.7 диагностическая сеть (системы мониторинга): Комплекс программно-аппаратных средств системы мониторинга состояния оборудования, обеспечивающий передачу, хранение, отображение, регистрацию на удаленных станциях пользователей информации о состоянии оборудования в реальном масштабе времени с выдачей необходимого предупреждения.

3.1.8 станция пользователя: Программно-аппаратный комплекс на базе компьютеров общего применения, предназначенный для получения, отображения и протоколирования информации о состоянии оборудования в реальном масштабе времени.

3.1.9 ошибка динамического распознавания (опасного состояния оборудования): Пропуск своевременного распознавания опасного технического состояния оборудования, вызванный тем, что период между двумя последовательными измерениями значений параметров технического состояния превышает интервал развития неисправности от момента ее обнаружения до предельного состояния оборудования.

3.1.10 ошибка статического распознавания (опасного состояния оборудования): Пропуск своевременного распознавания опасного технического состояния оборудования, вызванный тем, что неисправное состояние оборудования система мониторинга воспринимает как исправное.

3.1.11 риск пропуска опасного состояния оборудования: Вероятность пропуска опасного технического состояния оборудования вследствие ошибок динамического и/или статистического распознавания и/или влияния человеческого фактора, выражающегося в несвоевременном выполнении персоналом предписаний системы мониторинга по устранению обнаруженного ею опасного технического состояния оборудования.

3.1.12 оборудование: Машины или группы машин, включая элементы управления.

3.1.13 неисправность: Состояние объекта, когда один из его элементов или группа элементов проявляет признаки ухудшения механических свойств или нарушения работы, что может привести к отказу.

3.2 В настоящем стандарте применены следующие сокращения:

АЭС

- атомная электростанция;

СМНМЭП

- система многопараметрического непрерывного мониторинга эксплуатационной повреждаемости оборудования АЭС;

КЭ

- конечно-элементный;

ВВЭР

- водо-водяной энергетический реактор;

СВШД

- система виброшумовой диагностики;

СВШК

- системa виброшумового контроля;

РУ

- реакторная установка.

     

     4 Общие положения

4.1 Управление ресурсом ответственного оборудования энергоблоков АЭС в период сверхпроектного срока службы является актуальной задачей, требующей совершенствования подходов к диагностике текущего технического состояния и прогнозированию остаточного ресурса.

4.2 Cуществуют критические элементы (узлы, зоны, сварные соединения), склонные к повышенной повреждаемости в условиях действия высоких эксплуатационных нагрузок, в том числе непроектных, и негативного влияния окружающей среды (водной химии, отложений, продуктов коррозии и др.).

При наличии таких эксплуатационных повреждений в элементах АЭС главной задачей становится поиск причин их появления и оценка живучести.

4.3 На практике встречаются случаи, когда причины дефектообразования не удается выяснить до конца и устранить, а принимаемые компенсирующие мероприятия являются недостаточно эффективными. В таких ситуациях возникает опасность нарушения целостности оборудования при работе энергоблока с появлением течи теплоносителя и развитием дефектов до критических размеров.

В таких случаях в качестве эффективной компенсирующей меры целесообразно использовать многопараметрический непрерывный мониторинг эксплуатационной повреждаемости оборудования.

4.4 СМНМЭП позволяет оперативно решать следующие задачи:

- повышение безопасности эксплуатации энергоблока АЭС;

- установление причинно-следственных связей дефектообразования и развития повреждаемости в критической зоне, определение доминирующих нагружавших факторов и механизмов повреждения;

- разработка эффективных компенсирующих мероприятий, направленных на исключение или существенное снижение влияния основных повреждающих факторов, способствующих зарождению и росту дефектов;

- разработка новых критериев допустимости выявленных эксплуатационных дефектов (в зависимости от протяженности, высоты, эквивалентной площади, ориентации, местоположения по периметру) с целью обоснованного снятия консерватизма, имеющего место при браковке дефектов согласно действующим нормам оценки качества, а также определение скорости роста дефекта во времени;

- снижение количества превентивных необоснованных ремонтов допустимых дефектов с их постановкой под непрерывный мониторинг в процессе эксплуатации;

- совершенствование расчетного обоснования эксплуатационной нагруженности;

- разработка фактического сценария эксплуатации с целью расчетного прогнозирования остаточного ресурса.

4.5 СМНМЭП позволяет осуществлять:

- мониторинг развития эксплуатационной повреждаемости критических зон, осуществляемый с целью определения момента образования эксплуатационных дефектов и оценки кинетики их развития в различных режимах эксплуатации оборудования;

- мониторинг фактической термо-деформационной нагруженности критических зон, осуществляемый с целью определения доминирующих факторов и механизмов повреждения, а также установления причинно-следственных связей дефектообразования и развития непроектной нагруженности и как следствие повышенной повреждаемости в критических зонах.

4.6 Результаты, полученные в ходе эксплуатации СМНМЭП, позволяют разработать и реализовать эффективные компенсирующие мероприятия, направленные на исключение или существенное снижение влияния основных повреждающих факторов, способствующих зарождению и росту дефектов.

     5 Требования безопасности

5.1 К выполнению экспериментальных работ в рамках расчетно-экспериментального метода, регламентируемого настоящим стандартом, допускают операторов, обладающих навыками эксплуатации используемого оборудования, умеющих пользоваться соответствующими национальными отраслевыми нормативными и техническими документами, прошедших обучение работе с применяемыми средствами испытаний и аттестованных на знание правил безопасности в соответствующей отрасли промышленности.

5.2 При проведении испытаний оператор должен руководствоваться ГОСТ 12.2.003, ГОСТ 12.3.002 и правилами технической безопасности при эксплуатации электроустановок потребителей по ГОСТ 12.1.019 и ГОСТ 12.1.038.

5.3 Испытания проводят в соответствии с требованиями безопасности, указанными в инструкции по эксплуатации аппаратуры, входящей в состав используемых средств испытаний.

5.4 При организации работ по проведению испытаний должны быть соблюдены требования пожарной безопасности по ГОСТ 12.1.004.

     6 Требования к порядку мониторинга

6.1 Выбор системы мониторинга

6.1.1 Выбор класса системы мониторинга зависит от категории опасности оборудования, оснащаемого системами мониторинга.

6.1.2 Устанавливаются следующие категории оборудования:

- оборудование первой категории, занимающее ключевые позиции в технологическом процессе и определяющее безопасность производства, внезапный отказ которого может привести к техногенной аварии (взрыву, пожару) и/или существенному снижению технико-экономических показателей производства;

- оборудование второй категории, не играющее ключевой роли в технологическом процессе, но внезапный отказ которого может привести к снижению безопасности и технико-экономических показателей производства;

- оборудование третьей категории, имеющее вспомогательное значение.

6.1.3 В зависимости от категории оборудования выбирают класс системы мониторинга в соответствии с классификацией по ГОСТ Р 53564, приведенной в приложении А.

Системы первого класса применяют для комплексного мониторинга оборудования в целом, включая оборудование первой, второй и третьей категорий с возможностью автоматической блокировки опасных агрегатов и обеспечения безопасной ресурсосберегающей эксплуатации оборудования по фактическому техническому состоянию.

Системы второго класса применяют для мониторинга оборудования второй и третьей категорий с возможностью автоматической блокировки опасных агрегатов и обеспечения безопасной ресурсосберегающей эксплуатации оборудования по фактическому техническому состоянию.

Системы третьего класса применяют для мониторинга оборудования третьей категории по фактическому техническому состоянию.

Системы четвертого и более низких классов являются вспомогательными.

6.2 Требования к СМНМЭП

6.2.1 К системе мониторинга предъявляются следующие требования:

- система должна работать непрерывно в течение, как минимум, одной топливной кампании (12-18 месяцев) без возможности доступа персонала для сервисного обслуживания с учетом размещения компонентов системы в необслуживаемых помещениях энергоблока АЭС;

- надежность, долговечность, живучесть и оптимальные температурные режимы работы системы должны быть обеспечены с учетом работы в жестких условиях (повышенная температура, влажность, ионизирующие излучения);

- необходимо обеспечить возможность удаленного управления и контроля системой, хранение большого объема данных мониторинга, передача их конечному пользователю и оперативный анализ;

- измерительная часть системы (датчики, контактная смазка, оснастка и др.) должна быть спроектирована и подобрана с учетом высоких температур металла контролируемого оборудования (до 320°C);

- необходимо обеспечивать возможность одновременного сбора и обработки данных, поступающих как с быстрых, так и с медленных каналов контрольных датчиков.

6.2.2 На подготовительном этапе проводят следующие расчетно-экспериментальные и проектно-конструкторские работы:

- разработка расчетной трехмерной КЭ модели объекта мониторинга с присоединительными трубопроводами, которая максимально точно повторяет фактические геометрические размеры, характеристики опор, свойства материалов, проектные нагрузки в стационарных и переходных режимах;

- проведение предварительных расчетов на прочность с целью определения необходимого и достаточного числа контрольных датчиков мониторинга, их типов, а также наиболее показательных мест установки;

- разработка архитектуры и компонентного состава системы мониторинга, включая подбор регистрирующей аппаратуры, проектирование системы кабельных линий питания и связи; программирование работы компонентов модуля сбора и первичной обработки данных (блока сбора данных) и блока хранения и передачи данных, разработка и программирование пользовательского интерфейса для отображения и анализа данных мониторинга в режиме реального времени;

- конструирование и изготовление оснастки и крепежа для монтажа измерительных датчиков на объекте контроля;

- проведение комплекса лабораторных испытаний с целью определения технических характеристик, а также показателей живучести и долговечности высокотемпературных акустико-эмиссионых датчиков, высокотемпературных ультразвуковых датчиков с акустическими волноводами, различных видов контактной смазки, различных типов приварных и клеевых высокотемпературных тензорезисторов и др.;

- проведение длительных лабораторных испытаний базовых компонентов системы мониторинга на полномасштабном стенде в непрерывном режиме с определением показателей наработки на отказ.

6.3 Рекомендуемая структура СМНМЭП

6.3.1 В СМНЭП входят:

- датчики контроля параметров целостности металла (ультразвуковые и акустико-эмиссионные);

- датчики деформации;

- датчики давления;

- датчики температуры;

- датчики ускорения;

- датчики перемещения;

- датчики целостности;

Закупки не найдены
Свободные
Р
Заблокированные
Р
Роль в компании Пользователь

Для продолжения необходимо войти в систему

После входа Вам также будет доступно:
  • Автоматическая проверка недействующих стандартов в закупке
  • Создание шаблона поиска
  • Добавление закупок в Избранное