Внимание! В период с 29.07.22 по 11.08.22 сервис будет находиться в режиме технического обслуживания. В этой связи может наблюдаться нестабильная работа. Приносим извинения за неудобства.
1
Доступно поисковых запросов: 1 из 2
Следующий пробный период начнётся: 15 августа 2022 в 16:05
Снять ограничение

ГОСТ Р 57700.13-2018

Численное моделирование физических процессов. Численное моделирование многофазной фильтрации. Верификация ПО
Недействующий стандарт
Проверено:  07.08.2022

Информация

Название Численное моделирование физических процессов. Численное моделирование многофазной фильтрации. Верификация ПО
Название английское Numerical modeling of physical processes. Numerical modeling of multiphase flows in porous medium. Software verification
Дата актуализации текста 21.04.2018
Дата актуализации описания 01.01.2021
Дата издания 14.03.2018
Дата введения в действие 01.01.2019
Область и условия применения Настоящий стандарт определяет общие требования к верификации программного обеспечения компьютерного моделирования, применяемого для численного моделирования многофазной фильтрации жидкостей и газов. Фильтрацией называется течение флюидов в проницаемой пористой среде. Течение может сопровождаться относительным движение фаз флюида, фазовыми превращениями, неизотермическими процессами, диффузией компонентов, теплопроводностью и т.д. В стандарте предлагаются тестовые задачи для верификации расчетов фильтрации в геофизических приложениях, в том числе расчетов фильтрации при разработке месторождений углеводородов, получения геотермальной энергии и захоронения отходов в недрах Земли. При выборе тестовых задач учитывается, что в отмеченных приложениях на фильтрацию существенно влияют физико-химические свойства флюида, его компонентный состав, фильтрационно-емкостные свойства скелета пористой среды, а также тепломассообмен со скважинами
Опубликован Официальное издание. М.: Стандартинформ, 2018 год
Утверждён в Росстандарт

Расположение в каталоге ГОСТ


ГОСТ Р 57700.13-2018

     

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ

Численное моделирование многофазной фильтрации. Верификация ПО

Numerical modeling of physical processes. Numerical modeling of multiphase filtiation. Software verification



ОКС 35.020

Дата введения 2019-01-01

     

Предисловие

1 РАЗРАБОТАН Закрытым акционерным обществом "Т-Сервисы" (ЗАО "Т-Сервисы")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 700 "Математическое моделирование и высокопроизводительные вычислительные технологии"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 6 февраля 2018 г. N 53-ст

4 ВВЕДЕН ВПЕРВЫЕ


Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение


Данный стандарт посвящен требованиям к верификации программного обеспечения компьютерного моделирования (ПО КМ), предназначенного для численного моделирования многофазной фильтрации. Целью верификации является подтверждение корректности программной реализации выбранных математических моделей течений в пористой среде. Верификация других функциональных возможностей ПО КМ (ввод-вывод, пользовательский интерфейс и т.д.) рассматривается в ГОСТ Р ИСО/МЭК 12207. Основной метод верификации ПО КМ - это решение тестовых задач, в идеале покрывающих весь код ПО КМ. Рекомендуемые тесты изложены в настоящем стандарте.

Для тестирования ПО КМ предлагается 28 тестовых задач, позволяющих проверить адекватность расчета на ПО различных фильтрационных течений. Для каждой тестовой задачи приведена формулировка функциональности ПО, адекватность реализации которой позволяет проверить краткое описание постановки задачи, результаты моделирования фильтрации и критерий качества, позволяющий определить прохождение теста.

В стандарте приведена обзорная таблица основных параметров тестовых задач.

     1 Область применения


Настоящий стандарт определяет общие требования к верификации программного обеспечения компьютерного моделирования, применяемого для численного моделирования многофазной фильтрации жидкостей и газов. Фильтрацией называется течение флюидов в проницаемой пористой среде. Течение может сопровождаться относительным движением фаз флюида, фазовыми превращениями, неизотермическими процессами, диффузией компонентов, теплопроводностью и т.д. В стандарте предлагаются тестовые задачи для верификации расчетов фильтрации в геофизических приложениях, в том числе расчетов фильтрации при разработке месторождений углеводородов, получения геотермальной энергии и захоронения отходов в недрах Земли. При выборе тестовых задач учитывается, что в отмеченных приложениях на фильтрацию существенно влияют физико-химические свойства флюида, его компонентный состав, фильтрационно-емкостные свойства скелета пористой среды, а также тепломассообмен со скважинами.

Настоящий стандарт применим для верификации программного обеспечения компьютерного моделирования при проведении его сертификации в соответствии с ГОСТ Р 57700.1 и ГОСТ Р 57700.2.

     2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 57188 Численное моделирование физических процессов. Термины и определения

ГОСТ Р 57700.1 Численное моделирование для разработки и сдачи в эксплуатацию высокотехнологичных промышленных изделий. Сертификация программного обеспечения. Требования

ГОСТ Р 57700.2 Численное моделирование для разработки и сдачи в эксплуатацию высокотехнологичных промышленных изделий. Сертификация программного обеспечения. Общие положения

ГОСТ Р 57700.5 Численное моделирование физических процессов. Термины и определения в области механики течений в пористых средах

ГОСТ Р ИСО/МЭК 12207 Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

     3 Термины, определения и сокращения

3.1 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р 57188 и ГОСТ Р 57700.5.

3.2 Сокращения

В настоящем стандарте применены следующие сокращения:

ПО - программное обеспечение;

Функции ОФП - функции относительной фазовой проницаемости;

Данные PVT - соотношения между физическими/термодинамическими параметрами флюида.

     4 Рекомендуемые тесты для проведения верификации ПО

     4.1 Задача Баклея-Леверетта


Тестируемая функциональность ПО: В рамках данной задачи проверяется применимость ПО для адекватного расчета двухфазной фильтрации несмешивающихся флюидов.

Постановка: Рассматривается одномерное течение в однородной пористой среде. Моделируется течение в области конечной протяженности. В начальный момент времени пористая среда насыщена вытесняемым флюидом. На одной из двух границ задано постоянное давление, а на второй границе насыщенность нагнетаемого флюида равна единице и задан расход флюида (или давление). Капиллярное давление не учитывается. Флюиды несжимаемые, и их вязкости постоянны. Закачка приводит к распространению в резервуар фронта вытеснения и присоединенной волны Римана. Данная задача имеет аналитическое решение, описывающее распространение в резервуаре отмеченных волн. Аналитическое и численное решение данной задачи может быть построено при различных кривых относительной фазовой проницаемости и различных вязкостях флюидов [1].

Результаты моделирования: Распределение насыщенности вытесняющего флюида в выбранный момент времени.

Критерий качества: Совпадение результатов моделирования с аналитическим решением [1], [2].

     4.2 1-я тестовая задача Общества инженеров-нефтяников


Тестируемая функциональность ПО: В рамках данной задачи проверяются:

- применимость ПО для адекватного расчета смешивающегося вытеснения в пористой среде;

- применимость ПО для адекватного расчета двухфазной фильтрации нефть-газ с учетом растворимости газа в нефти;

- базовые функциональные возможности ПО для моделирования вертикальных скважин на различных режимах.

Постановка: В рамках модели "Черной нефти" рассматривается секторная модель газового заводнения нефтяного пласта, находящегося в условиях недонасыщенной нефти. Пласт моделируется тремя слоями ячеек с неоднородным распределением проницаемости. Функции ОФП и данные PVT заданы в виде таблиц. Фильтрационная модель содержит две скважины - нагнетательную и добывающую, расположенные в противоположных углах сектора. Нагнетание газа происходит с заданным расходом, а добывающая скважина эксплуатируется при заданном дебите нефти с ограничением на минимальное забойное давление. Закачка газа приводит к смешивающемуся вытеснению нефти газом от нагнетательной к добывающей скважине. В процессе закачки газ прорывается к скважине, а режим работы добывающей скважины переключается с заданного дебита на заданное забойное давление. Моделируется повышение эффективности вытеснения нефти за счет снижения вязкости и увеличения объема (набухания) нефти при обогащении газом, то есть при растворении в ней газа [3].

Результаты моделирования: Дебит нефти; газонефтяной фактор на добывающей скважине; давление и насыщенность газа в ячейке модели пласта, в которой перфорирована добывающая скважина; давление в ячейке, в которой перфорирована нагнетательная скважина; распределение насыщенности газа в заданный момент времени.

Критерий качества: Совпадение результатов моделирования с эталонными результатами, опубликованными в [3].

     4.3 2-я тестовая задача Общества инженеров-нефтяников


Тестируемая функциональность ПО: В рамках данной задачи проверяется применимость ПО:

- для адекватного расчета трехфазной фильтрации нефть-вода-газ;

- моделирования образования конуса подошвенной воды, вызванного работой вертикальной скважины;

- расчета начального капиллярно-гравитационного равновесия.

Постановка: В рамках модели "Черной нефти" рассматривается профильная осесимметричная задача фильтрации в околоскважинной зоне вертикальной скважины. Функции ОФП, кривые капиллярного давления и данные PVT заданы в виде таблиц. Моделируется разработка газонефтяного месторождения. Добывающая скважина перфорирована между газонефтяным и водонефтяным контактами. Скважина эксплуатируется с заданным изменяющимся со временем дебитом нефти и ограничением на забойное давление. Снижение давления, вызванное отбором нефти, приводит к прорыву газа из газовой шапки к перфорированному интервалу скважины и подъему подошвенной воды - конусообразованию. В результате дебит нефти снижается, а газонефтяной фактор и обводненность извлекаемой жидкости возрастают со временем. В процессе разработки пласта достигается ограничение на минимальное забойное давление [4].

Результаты моделирования: Дебиты нефти, газа и воды; газонефтяной фактор; обводненность; давление и насыщенность газа в заданных ячейках фильтрационной модели.

Критерий качества: Совпадение результатов моделирования с эталонными результатами, опубликованными в [4].

     4.4 3-я тестовая задача Общества инженеров-нефтяников


Тестируемая функциональность ПО: В рамках данной задачи проверяется применимость ПО:

- для композиционного моделирования фильтрации;

- калибровки уравнения состояния пластового флюида к данным PVT.

Постановка: Рассматривается сектор пласта, насыщенного углеводородным конденсатом. Имеются одна добывающая скважина и одна нагнетательная. Моделируется разработка методом закачки в пласт отобранного углеводородного газа (сайклинг-процесс). По постановке задачи нагнетаемый газ - газ, полученный смешением газов всех трех стадий сепарации добываемого флюида. Снижение пластового давления вблизи добывающей скважины приводит к ретроградной конденсации - выпадению в пласте более тяжелой жидкой фазы. Закачка сухого газа сепарации способствует испарению конденсата и более полному извлечению углеводородов. Рассмотрено два случая постановки задачи. В первом случае в течение первых 10 лет используется постоянный объем нагнетаемого газа сепарации, после чего закачка останавливается и моделируется дальнейший отбор флюидов до полного истощения пласта. Во втором случае в течение пяти лет моделируется более высокий объем закачки газа, затем объем снижается, оставаясь постоянным в течение последующих пяти лет, и в дальнейшем закачка газа останавливается. Данная задача может быть рассчитана в рамках полного композиционного подхода, основывающегося на уравнении состояния, в рамках упрощенного метода, основывающегося на использовании коэффициентов распределения, а также может быть получено приближенное решение в рамках расширенной модели "Черной нефти" [5].

Результаты моделирования: Результаты расчета PVT исследований пластового флюида; дебит нефти и накопленная добыча нефти; насыщенность конденсата в выбранных ячейках сетки.

Критерий качества: Совпадение результатов моделирования с эталонными результатами, опубликованными в [5].

     4.5 4-я тестовая задача Общества инженеров-нефтяников


Тестируемая функциональность ПО: В рамках данной задачи проверяется применимость ПО для расчета неизотермической фильтрации в задачах разработки месторождений тяжелой нефти.

Постановка: Рассматривается секторная модель месторождения легкой нефти. В начальный момент времени пласт насыщен нефтью в состоянии гравитационного равновесия. Нефть моделируется смесью шести псевдокомпонент. Моделируется разработка пласта методом водогазового воздействия. В противоположных углах сектора расположены нагнетательная и добывающая скважины. Для добывающей скважины заданы дебит и ограничение на минимальное забойное давление. Через нагнетательную скважину в пласт попеременно нагнетаются вода и углеводородный газ, состоящий из легких углеводородных компонент. Компонентный состав нагнетаемого газа подобран таким образом, чтобы вытеснение происходило при газонапорном режиме с конденсацией. Рассмотрены три случая задачи. В первом случае пластовое давление в результате отбора флюида снижается ниже давления насыщения пластовой нефти. Во втором случае пластовое давление поддерживается выше давления насыщения на уровне минимального давления смесимости. В третьем случае на начальном этапе среднее пластовое давление снижается ниже давления насыщения, а затем быстро поднимается до уровня минимального давления смесимости за счет закачки воды и углеводородного газа. Данная задача может быть рассчитана в полной композиционной постановке и в приближении четырехкомпонентной фильтрации, если углеводородная смесь моделируется тремя псевдокомпонентами. Кривые ОФП и капиллярного давления задаются таблицами [6].

Результаты моделирования: Дебиты воды и нефти; накопленная добыча воды и нефти; нефтепаровой фактор; забойное давление; потери тепла.

Критерий качества: Совпадение результатов моделирования с эталонными результатами, опубликованными в [6].

     4.6 5-я тестовая задача Общества инженеров-нефтяников


Тестируемая функциональность ПО: В рамках данной задачи проверяется применимость ПО:

- для композиционного моделирования фильтрации;

- расчета многокомпонентной фильтрации;

- расчета водогазового воздействия на пласт.

Постановка: Рассматривается секторная модель месторождения легкой нефти. В начальный момент времени пласт насыщен нефтью в состоянии гравитационного равновесия. Нефть моделируется смесью шести псевдокомпонент. Моделируется разработка пласта методом водогазового воздействия. В противоположных углах сектора расположены нагнетательная и добывающая скважины. Для добывающей скважины заданы дебит и ограничение на минимальное забойное давление. Через нагнетательную скважину в пласт попеременно нагнетаются вода и углеводородный газ, состоящий из легких углеводородных компонент. Компонентный состав нагнетаемого газа подобран таким образом, чтобы вытеснение происходило при газонапорном режиме с конденсацией. Рассмотрены три случая задачи. В первом случае пластовое давление в результате отбора флюида снижается ниже давления насыщения пластовой нефти. Во втором случае пластовое давление поддерживается выше давления насыщения на уровне минимального давления смесимости. В третьем случае на начальном этапе среднее пластовое давление снижается ниже давления насыщения, а затем быстро поднимается до уровня минимального давления смесимости за счет закачки воды и углеводородного газа. Данная задача может быть рассчитана в полной композиционной постановке и в приближении четырехкомпонентной фильтрации, если углеводородная смесь моделируется тремя псевдокомпонентами. Кривые ОФП и капиллярного давления задаются таблицами [7].

Результаты моделирования: Среднее пластовое давление; дебит нефти; накопленная добыча нефти; газонефтяной фактор; водонефтяной фактор; насыщенность нефти в заданной ячейке.

Критерий качества: Совпадение результатов моделирования с эталонными результатами, опубликованными в [7].

     4.7 6-я тестовая задача Общества инженеров-нефтяников


Закупки не найдены
Свободные
Р
Заблокированные
Р
Роль в компании Пользователь

Для продолжения необходимо войти в систему

После входа Вам также будет доступно:
  • Автоматическая проверка недействующих стандартов в закупке
  • Создание шаблона поиска
  • Добавление закупок в Избранное