1
Доступно поисковых запросов: 1 из 2
Следующий пробный период начнётся: 10 февраля 2023 в 09:53
Снять ограничение

ГОСТ Р 57941-2017

Композиты полимерные. Инфракрасная спектроскопия. Качественный анализ
Действующий стандарт
Проверено:  02.02.2023

Информация

Название Композиты полимерные. Инфракрасная спектроскопия. Качественный анализ
Название английское Polymer composites. Infrared spectroscopy. Qualitative analysis
Дата актуализации текста 01.01.2021
Дата актуализации описания 01.01.2023
Дата издания 09.08.2019
Дата введения в действие 01.06.2018
Область и условия применения Настоящий стандарт устанавливает общие требования к проведению качественного анализа полимерных композитов методами инфракрасной спектроскопии в спектральном диапазоне от 4000 до 50 см-1, при котором количество доступного для анализа образца не является ограничивающим фактором. Эти методы используют также для регистрации спектров в ближней инфракрасной области спектра (при волновых числах свыше 4000 см в степени -1)
Опубликован Официальное издание. М.: Стандартинформ, 2019 год
Утверждён в Росстандарт


ГОСТ Р 57941-2017

     

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОМПОЗИТЫ ПОЛИМЕРНЫЕ

Инфракрасная спектроскопия. Качественный анализ

Polymer composites. Infrared spectroscopy. Qualitative analysis



ОКС 13.220.40

Дата введения 2018-06-01

     

Предисловие

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт авиационных материалов" совместно с Автономной некоммерческой организацией "Центр нормирования, стандартизации и классификации композитов" при участии Объединения юридических лиц "Союз производителей композитов" на основе собственного перевода на русский язык англоязычной версии указанного в пункте 4 стандарта

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 497 "Композиты, конструкции и изделия из них"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 10 ноября 2017 г. N 1731-ст

4 Настоящий стандарт является модифицированным по отношению к стандарту АСТМ Е1252-98 (2013)е1* "Стандартная практика общих методов получения инфракрасных спектров для качественного анализа" (ASTM Е1252-98 (2013)е1 "Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis", MOD) путем включения дополнительных положений, фраз, слов, ссылок, показателей, их значений и/или внесения изменений по отношению к тексту применяемого стандарта АСТМ, которые выделены курсивом**.

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей;

** В оригинале обозначения и номера стандартов и нормативных документов приводятся обычным шрифтом, кроме отмеченного в разделе "Предисловие" знаком "**". - Примечания изготовителя базы данных.   



Разделы (подразделы, пункты), не включенные в настоящий стандарт, приведены в дополнительном приложении ДА.

Сопоставление структуры настоящего стандарта со структурой указанного стандарта АСТМ приведено в дополнительном приложении ДБ.

В настоящем стандарте исключена ссылка на стандарт АСТМ Е168, т.к. он был отменен, а также на стандарты АСТМ Е573, АСТМ Е932, АСТМ Е1421 и АСТМ Е1642, т.к. они носят справочный характер.

Наименование настоящего стандарта изменено относительно наименования указанного стандарта АСТМ для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5).

Сведения о соответствии ссылочных национальных и межгосударственных стандартов стандартам АСТМ, использованным в качестве ссылочных в примененном стандарте АСТМ, приведены в дополнительном приложении ДВ

5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Август 2019 г.


Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

     1 Область применения


Настоящий стандарт устанавливает общие требования к проведению качественного анализа полимерных композитов методами инфракрасной спектроскопии в спектральном диапазоне от 4000 до 50 см, при котором количество доступного для анализа образца не является ограничивающим фактором. Эти методы используют также для регистрации спектров в ближней инфракрасной области спектра (при волновых числах свыше 4000 см).

Настоящий стандарт применим к анализу других материалов, таких как чистые органические и неорганические вещества и их смеси, полимерные материалы (как реактопласты, так и термопласты), а также компоненты для их производства, включая смолы, отвердители, ускорители, пластификаторы и проч.

     2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты:     

ГОСТ 27176 Приборы спектральные оптические. Термины и определения

ГОСТ Р 57939 Композиты полимерные. Инфракрасная спектроскопия. Общие принципы

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

     3 Термины и определения


В настоящем стандарте применены термины по ГОСТ 27176.

     4 Общие сведения

4.1 Инфракрасный (ИК) качественный анализ выполняют путем идентификации функциональных групп или путем сопоставления ИК-спектров поглощения неизвестных материалов со спектрами известных эталонных материалов, или обоими способами. Эти спектры получают методами пропускания, отражения и другими методами, например, оптико-акустической спектроскопии. Сравниваемые спектры необходимо получать с использованием одного метода и при одинаковых условиях. При использовании опубликованных эталонных спектров необходимо принимать во внимание, что не все эти спектры полностью проверены.

Измерительные приборы и приспособления для инфракрасного качественного анализа выпускаются серийно и доступны для приобретения. Для обеспечения оптимальной производительности и безопасности необходимо соблюдать руководство изготовителя.

4.2 Спектры пропускания получают, размещая тонкий равномерный слой образца перпендикулярно траектории инфракрасных лучей (исключение приведено в 6.5 для устранения возможного появления интерференционных полос в случае анализа тонких пленок). Толщина образца должна быть достаточной для снижения мощности излучения, достигающего детектора на частотах поглощения, используемых в ходе анализа. Для получения наилучших результатов коэффициент поглощения наиболее интенсивных полос должен находиться в пределах от 1 до 2, а несколько полос должны иметь коэффициент поглощения не менее 0,6. Существуют исключения из этого правила, основанные на полярности измеряемых молекул. Например, насыщенные углеводороды неполярны, и их характеристические полосы недостаточно интенсивны, однако если не обращать внимания на чрезмерную интенсивность полосы поглощения валентных колебаний С-Н при 2920 см, интенсивность полос поглощения деформационных колебаний в диапазоне от 1440 до 1460 см может составлять от 1,5 до 2,0. Для выполнения достоверного анализа могут потребоваться спектры с различным количеством образца на пути светового пучка. Если спектры анализируют при помощи компьютеризированного сравнения, коэффициент поглощения наиболее интенсивной полосы должен быть менее 1; в противном случае воздействие функции формы спектральной измерительной линии приведет к погрешностям в относительной интенсивности полос в спектрах, измеренных дисперсионными спектрометрами и ИК-Фурье-спектрометрами с определенными функциями аподизации (особенно треугольной).

Метод получения спектров пропускания зависит от состояния образца. Большинство образцов, за исключением самоподдерживаемых тонких пленок, требуют наличия ИК-прозрачных окон или матриц, содержащих образцы. В таблице 1 приведены свойства часто используемых материалов ИК-прозрачных окон. Выбор материала окна зависит от области ИК-спектра, которая будет использоваться для анализа, от отсутствия воздействия на образец и достаточной прочности для типа образца.

Таблица 1 - Свойства материалов окон (в порядке возрастания длинноволновой границы диапазона использования)

Материал окна

Химический состав

Отсечка

Полезный диапазон пропускания

Растворимость в воде

Показатель прелом-
ления

При (мкм)

Примечания

(мкм)

(см)

(мкм)

(см)

Стекло

~2,5

~4000

0,35-2

28600-
5000

Нерастворим

1,5-1,9

HF, щелочь

Кварц (плавленый)

~3,5

~2860

0,2-4

50000-
2500

Нерастворим

1,43

4,5

HF

Нитрат кремния

-

-

0,3-
4,5

33300-
2200

-

-

-

-

Карбид кремния

SiC

-

-

0,6-5

16600-
2000

-

-

-

-

Кальцит

-

-

0,2-5

50000-
2000

-

1,65, 1,5

0,589

Взаимодействует с кислотами

Сапфир

~5,5

~1820

0,2-
5,5

50000-
1820

Нерастворим

1,77

0,55

Хорошая прочность, не разлагается

Алон (ALON)

-

-

0,2-
5,5

50000-
1700

-

1,8

0,6

-

Шпинель

-

-

0,2-6

50000-
1600

-

1,68

0,6

-

Титанат стронция

-

-

0,39-6

25000-
1700

Нерастворим

2,4

HF

Диоксид титана

-

-

0,42-6

24000-
1700

Нерастворим

2,6-2,9

и щелочь

Фторид лития

LiF

~6,0

~1670

0,2-7

50000-
1430

Слаборастворим

1,39

1,39

Кислота

Двуокись циркония

-

-

0,36-7

27000-
1500

Нерастворим

2,15

HF и

Кремний

Si

-

-

1,5-7 и 10-
50

6600-
1430

Нерастворим

3,4

11,0

Взаимодействует с HF, щелочь

Оксид иттрия

-

-

0,25-8

40000-
1250

-

1,9

0,6

-

Оксид иттрия (легированный La)

-

-

0,25-8

40000-
1250

-

1,8

0,6

-

Фторид магния

-

-

2-8

5000-
1250

Слаборастворим

1,3

6,7

Оксид магния

MgO

-

-

0,4-8

25000-
1300

Нерастворим

1,6

5

Кислота и соли

Флюорит

~8,0

~1250

0,2-10

50000-
1000

Нерастворим

1,40

8,0

Соль амина и соли

Фторид стронция

-

-

0,13-
11

77000-
910

Слаборастворим

1,4

Фторид кальция

-

-

0,2-11

50000-
910

Нерастворим

1,34

5,0

Поликристаллический, не разлагается

Фосфид галлия

GaP

-

-

0,5-11

20000-
910

-

-

-

-

Фторид свинца

-

-

0,3-12

3450-
830

-

1,7

1

-

Сульфид мышьяка

-

-

1-12

10000-
830

Нерастворим (слаборастворим в горячей воде)

2,59

0,67

Щелочь, размягчается при 195°С

Фторид бария

~11

~910

0,2-13

50000-
770

Нерастворим

1,45

5,1

-

AMTIR

стекло GeAsSe

-

-

0,9-14

11000-
720

Нерастворим

2,5

10

Твердый, ломкий, разрушается щелочью, хороший материал ATR

Сульфид цинка

ZnS

-

-

1-14

10000-
720

Нерастворим

2,24

5,5

Нерастворим в большинстве растворителей

Фосфид индия

InP

-

-

1-14

10000-
720

-

-

-

-

Фторид калия

KF

-

-

0,16-
15

62500-
670

Растворим

1,3

0,3

Чрезвычайно гигроскопичен; не рекомендуется для обычного использования

Каменная соль

NaCI

~16

~625

0,2-16

50000-
630

Растворим

1,52

4,7

Растворим в глицерине

Сульфид кадмия

CdS

-

-

0,5-16

20000-
630

-

-

-

-

Селенид мышьяка

-

-

0,8-17

12500-
600

Слаборастворим

2,8

-

Растворяется в щелочах

Арсенид галлия

GaAs

-

-

1-17

10000-
600

Нерастворим

3,14

-

Слаборастворим в кислотах и щелочах

Германий

Ge

-

-

2-20

5000-
500

Нерастворим

4,0

13,0

Сильвин

KCI

-

-

0,3-21

33300-
480

Растворим

1,49

0,5

Растворим в глицерине

Селенид цинка

ZnSe

-

-

1-21

10000-
480

Нерастворим

2,5

1,0

Поликристаллический

Бромид натрия

NaBr

-

-

0,2-23

50000-
440

Растворим

1,7

0,35

Иодид натрия

Nal

-

-

0,25-
25

40000-
400

Растворим

1,7

0,5

Хлорид серебра

AgCI

~22

~455

0,6-25

16700-
400

Нерастворим

2,0

3,8

Мягкий, темнеет на свету, взаимодействует с металлами

Бромид калия

KBr

~25

~400

0,2-27

50000-
370

Растворим

1,53

8,6

Растворим в спирте; мутнеет

Теллурид кадмия

CdTe

~28

~360

0,5-28

20000-
360

Нерастворим

2,67

10

Кислоты,

Хлорид таллия

TICI

-

-

0,4-30

25000-
330

Слаборастворим

2,2

0,75

Токсичен

КРС-6


-

-

0,4-32

25000-
310

Слаборастворим

2,0-2,3

0,6-24

Токсичен

Бромид серебра

AgBr

~35

~286

2-35

5000-
290

Нерастворим

-

-

Мягкий, темнеет на свету, взаимодействует с металлами

КРС-5


~40

~250

0,7-38

14300-
260

Слаборастворим

2,38

4,0

Токсичен, мягкий, растворим в спирте,

Бромид цезия

CsBr

~35

~286

0,3-40

33300-
250

Растворим

1,66

8,0

Мягкий, мутнеет, растворим в спирте

Иодид калия

KI

0,15-
45

66600-
220

Бромид таллия

TIBr

0,45-
45

22000-
220

Слаборастворим

2,3

0,6-25

Токсичен

Иодид цезия

Csl

~52

~192

0,3-50

33300-
220

Растворим

1,74

8,0

Полиэтилен высокого давления


-

-

20-
220

500-
45

Нерастворим

1,52

-

Очень мягкий, органические жидкости проникают в полимер при комнатной температуре

Полиэтилен


-

-

2-220

5000-
45

Нерастворим

1,52

-

Размягчается при 90°С

Микропористый политетрафторэтилен


-

-

2-220

5000-
45

Нерастворим

1,52

-

Может использоваться до 200°С кратковременно

Алмаз

С

-

-

2-3 и 6-300

4500-
2500 и 1670-
33

Нерастворим

2,4

10

,

Отсечка определяется как диапазон частот, в пределах которого коэффициент пропускания образца толщиной 2 см превышает 0,5 (спектрометры с преобразованием Фурье могут работать за пределами этого диапазона).

Взаимодействует с указанным веществом.

Обыкновенный и необыкновенный лучи.

Длинноволновые границы зависят от степени чистоты.

Материл окон будет взаимодействовать с некоторыми неорганическими веществами, например , , .

Хранить материалы в темноте, не допускать контакта с металлическими рамами.

4.3 Спектры, полученные в режиме отражения, обычно имеют признаки как отражения, так и поглощения и подвержены влиянию показателей преломления среды и поверхностей раздела. Обработка результатов полученных спектров должна быть основана на эталонном эксперименте в аналогичных условиях. В частности, необходимо принимать во внимание, что спектр поверхности образца, полученный методом отражения, зачастую будет отличаться от спектров основного материала, полученных методом спектроскопии пропускания. Это происходит потому, что химические свойства поверхности зачастую отличаются от свойств основного материала ввиду таких факторов, как окисление поверхности, миграция продуктов от основной части к поверхности, а также возможные загрязнения поверхности. Некоторые измерения параметров поверхности чрезвычайно чувствительны к небольшим количествам материалов, присутствующих на поверхности, в то время как спектроскопия пропускания относительно нечувствительна к этим незначительным элементам.

Существуют различные способы получения спектров отражения:

- зеркальное отражение (см. 5.6);

- диффузное отражение (см. 5.7);

- отражение-поглощение (см. 5.8);

- внутреннее отражение, или нарушенное полное внутреннее отражение (НПВО, см. 5.10);

- спектроскопия скользящего отражения.

4.4 Оптико-акустические ИК-спектры рассматриваются в 8.2.

4.5 Эмиссионная спектроскопия рассматривается в 8.4.

     5 Анализ полимерных композитов

5.1 Общие сведения

Анализ полимерных композитов проводят так же, как и анализ любых других твердых веществ, однако есть некоторые особенности. Полимерные композиты, как правило, являются неплавкими и нерастворимыми веществами, что сильно ограничивает возможные методы исследования. Структура полимерных композитов неоднородна, поэтому результаты анализа могут существенно зависеть от выбранного метода анализа и пробоподготовки. Наличие в составе полимерного композита армирующего наполнителя может потребовать увеличения времени измельчения образца. Из-за интенсивного поглощения графита и подобных ему материалов в ИК области анализ полимерных композитов, содержащих такие наполнители, как углеродное волокно или технический углерод, требует повышенного внимания к выбору метода анализа и пробоподготовки.

Примечание - Методы, описанные в данном разделе, применимы для анализа любых твердых веществ.

5.2 Ячейки высокого давления с алмазными наковальнями

Анализ некоторых полимерных композитов может быть выполнен с использованием ячеек высокого давления с алмазными наковальнями согласно ГОСТ Р 57939. Однако чаще всего полимерные композиты невозможно спрессовать в тонкую пленку.

5.3 Прессование таблеток с галогенидами щелочных металлов

Этот метод предполагает измельчение образца полимерного композита, смешивание его с порошком галогенида щелочного металла и прессование получившейся смеси в таблетку или диск. Рассеяние ИК-излучения уменьшается за счет включения частиц образца в матрицу с сопоставимым показателем преломления. Галогениды щелочных металлов используют потому, что они обладают свойством холодного течения и не поглощают в широкой области спектра. Наиболее часто используется KBr, но KCI и Csl также применяют для лучшего соответствия показателей преломления, расширения спектрального диапазона, или чтобы избежать ионного обмена с другим образцом галоидной соли. Метод прессования таблеток применим для многих органических материалов, однако существуют ограничения, связанные с несколькими химическими классами материалов. Соли аминов, соли карбоновых кислот и некоторые неорганические соединения могут взаимодействовать с галогенидами щелочных металлов и давать спектр, отличающийся от спектра исходного образца.

Поскольку полученный спектр зависит от размера частиц, важно готовить и образец, и образец сравнения одинаковым способом, чтобы воспроизвести распределение размера частиц. Следует также отметить, что кристаллическая структура вещества может меняться при измельчении или под действием высокого давления при прессовании таблеток, что вызовет изменение ИК-спектра.

Для получения прозрачной таблетки и образец, и порошок галогенида щелочного металла должны быть сухими. Как правило, соотношение количеств образца к порошку КВг должно находиться в диапазоне от 1/50 до 1/1000 в зависимости от типа образца. Образцы измельчают с помощью ступки и пестика или механической вибромельницы до получения размера частиц меньше длины волны ИК-излучения (например, менее 2 мкм), чтобы минимизировать рассеивание ИК-излучения. Во избежание загрязнения образца при измельчении ступка и пестик должны быть изготовлены из агата, оксида алюминия или карбида бора. При правильном измельчении обычно получается глянцевый слой, прилипающий к ступке. В ступку добавляют KBr (или другой галогенид щелочного металла) и тщательно перемешивают с образцом. Смесь KBr с образцом помещают в специальную форму и сжимают до небольшого диска толщиной около 1 мм. Прилагаемое усилие зависит от диаметра формы. Лучшие таблетки формируются при предварительном вакуумировании формы, наполненной смесью KBr и образца, до начала приложения давления. Этот процесс позволяет максимально снизить количество воды в прессованной таблетке.

Для регулярного качественного анализа многих соединений необходимой степени измельчения и смешивания можно добиться путем измельчения смеси KBr и образца в вибромельнице в течение от 30 до 60 с.

Порошок галогенида щелочного металла может использоваться в качестве мягкого абразива для сбора проб поверхностных слоев таких материалов, как краски. Таблетки, изготовленные из таких порошков, используют для исследования атмосферного воздействия на отделочные покрытия и для экспертного сравнения автомобильных покрытий.

Часто используют миниатюрный пресс для прессования таблеток диаметром до 0,5 мм. Качество полученного спектра можно повысить, установив маленькую таблетку в световой конденсор в отсеке для образца ИК-спектрометра. Это приводит к дополнительной фокусировке ИК-луча, при этом его диаметр обычно уменьшается в 4-6 раз.

5.4 Метод полимерной матрицы

Порошкообразный полиэтилен высокого давления можно использовать в качестве материала матрицы в области от 500 до 50 см. Поскольку полосы поглощения в дальней ИК-области спектра обычно имеют низкий уровень интенсивности, требуется сравнительно высокое соотношение образец - полиэтиленовый порошок. Тщательно перемешанную смесь образца с полиэтиленом помещают в форму и нагревают до 90°С. Это позволяет получить спрессованную пленку с равномерно распределенным в ней образцом. Эта процедура применима только к соединениям, которые являются стабильными при 90°С.

5.5 Суспензии

Этот метод предполагает измельчение образца полимерного композита с небольшим количеством жидкости - суспендирующим агентом. Фторированное масло используется для области от 4000 до 1300 см, а вазелиновое масло - для области от 1300 до 50 см. Для получения полного спектра необходимо использовать суспензии в обеих жидкостях. Качественные спектры можно получить, используя только один суспендирующий агент (обычно вазелиновое масло), при условии, что поглощение масла не перекрывает области спектров, имеющие большое значение для анализа.

Приблизительно от 3 до 9 мг образца помещают в ступку из агата, оксида алюминия или карбида бора, измельчают до получения частиц диаметром менее 2 мкм и равномерно распределяют по всей поверхности ступки. На данном этапе образец должен иметь глянцевый вид. Добавляют одну или несколько капель суспендирующего агента, после чего продолжают энергичное измельчение до получения однородной массы консистенции сливок. С помощью чистого резинового шпателя пасту переносят на плоскую пластину из NaCI, KBr или другого материала (одноразовые карточки применимы для областей ИК-спектра от средней до дальней, при этом окна из полиэтилена высокого давления (ПЭВД) применимы в области менее 200 см) и равномерно распределяют по средней части пластины. При помощи второй пластины пасту сжимают в тонкую пленку путем аккуратного вращения верхней пластины (для одноразовых карточек и окон из ПЭВД это действие не требуется). В этот момент правильно приготовленная суспензия должна быть достаточно прозрачной в видимом свете (мутный вид означает, что необходимо дальнейшее измельчение).

Таблица 2 - Суспендирующие агенты

Закупки не найдены
Свободные
Р
Заблокированные
Р
Роль в компании Пользователь

Для продолжения необходимо войти в систему

После входа Вам также будет доступно:
  • Автоматическая проверка недействующих стандартов в закупке
  • Создание шаблона поиска
  • Добавление закупок в Избранное