Внимание! В период с 29.07.22 по 11.08.22 сервис будет находиться в режиме технического обслуживания. В этой связи может наблюдаться нестабильная работа. Приносим извинения за неудобства.
1
Доступно поисковых запросов: 1 из 2
Следующий пробный период начнётся: 16 августа 2022 в 04:30
Снять ограничение

ГОСТ Р 57986-2017

Композиты полимерные. Инфракрасная спектроскопия. Качественный анализ в ближней области инфракрасного спектра
Недействующий стандарт
Проверено:  08.08.2022

Информация

Название Композиты полимерные. Инфракрасная спектроскопия. Качественный анализ в ближней области инфракрасного спектра
Название английское Polymer composites. Infrared spectroscopy. Near infrared qualitative analysis
Дата актуализации текста 01.01.2022
Дата актуализации описания 01.06.2021
Дата издания 05.09.2019
Дата введения в действие 01.06.2018
Область и условия применения Настоящий стандарт устанавливает общие требования к спектроскопии в ближней инфракрасной области для качественного анализа полимерных композитов. Настоящий стандарт может быть также применен к анализу других материалов, таких как чистые органические и неорганические вещества и их смеси, растворы, полимерные материалы (как реактопласты, так и термопласты), а также компоненты для их производства, включая смолы, отвердители, ускорители, пластификаторы и прочие. Метод применим к твердым образцам, жидким и газообразным пробам. Настоящий стандарт предполагает, что большинство качественных анализов методом спектроскопии в ближней ИК области проводят с помощью приборов, специально сконструированных для данной цели и оснащенных средствами алгоритмической компьютерной обработки данных. Однако настоящий стандарт применим и к работе с жидкими образцами с помощью приборов, рассчитанных на работу в ультрафиолетовой (УФ), видимой и средней инфракрасной (ИК) области, при наличии подходящих средств обработки данных. Большинство ИК-Фурье-спектрометров (обычно это спектрометры, работающие в средней ИК области) могут работать и в ближней ИК области, или оснащаются светоделительными устройствами, обеспечивающими работу с длиной волны до 1,2 мкм. Настоящий стандарт применим и к данным, полученным с помощью таких приборов
Опубликован Официальное издание. М.: Стандартинформ, 2019 год
Утверждён в Росстандарт


ГОСТ Р 57986-2017

     

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОМПОЗИТЫ ПОЛИМЕРНЫЕ

Инфракрасная спектроскопия. Качественный анализ в ближней области инфракрасного спектра

Polymer composites. Infrared spectroscopy. Near infrared qualitative analysis



ОКС 13.220.40

Дата введения 2018-06-01

     

Предисловие

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт авиационных материалов" совместно с Автономной некоммерческой организацией "Центр нормирования, стандартизации и классификации композитов" при участии Объединения юридических лиц "Союз производителей композитов" на основе собственного перевода на русский язык англоязычной версии указанного в пункте 4 стандарта

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 497 "Композиты, конструкции и изделия из них"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 5 декабря 2017 г. N 1879-ст

4 Настоящий стандарт является модифицированным по отношению к международному стандарту АСТМ E1790-04 (2010)* "Стандартные практики по качественному анализу в ближней инфракрасной области" (ASTM E1790-04 (2010) "Standard practices for near infrared qualitative analysis", MOD) путем включения дополнительных положений, фраз, слов, ссылок, показателей, их значений и/или внесения изменений по отношению к тексту применяемого стандарта АСТМ, которые выделены курсивом**.

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей.

** В оригинале обозначения и номера стандартов и нормативных документов приводятся обычным шрифтом, кроме отмеченного в разделе "Предисловие" знаком "**". - Примечания изготовителя базы данных.


Разделы (подразделы, пункты), не вошедшие в настоящий стандарт, приведены в дополнительном приложении ДА.

Сопоставление структуры настоящего стандарта со структурой указанного стандарта АСТМ приведено в дополнительном приложении ДБ.

Наименование настоящего стандарта изменено относительно наименования указанного стандарта АСТМ для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5), а также в целях соблюдения принятой терминологии.

Сведения о соответствии ссылочных национальных и межгосударственных стандартов стандартам АСТМ, использованным в качестве ссылочных в примененном стандарте АСТМ, приведены в дополнительном приложении ДВ.

5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Август 2019 г.


Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

     1 Область применения


Настоящий стандарт устанавливает общие требования к спектроскопии в ближней инфракрасной области для качественного анализа полимерных композитов.

Настоящий стандарт может быть также применен к анализу других материалов, таких как чистые органические и неорганические вещества и их смеси, растворы, полимерные материалы (как реактопласты, так и термопласты), а также компоненты для их производства, включая смолы, отвердители, ускорители, пластификаторы и прочее. Метод применим к твердым образцам, жидким и газообразным пробам.

Настоящий стандарт предполагает, что большинство качественных анализов методом спектроскопии в ближней ИК области проводят с помощью приборов, специально сконструированных для данной цели и оснащенных средствами алгоритмической компьютерной обработки данных. Однако настоящий стандарт применим и к работе с жидкими образцами с помощью приборов, рассчитанных на работу в ультрафиолетовой (УФ), видимой и средней инфракрасной (ИК) области, при наличии подходящих средств обработки данных. Большинство ИК-Фурье-спектрометров (обычно это спектрометры, работающие в средней ИК области) могут работать и в ближней ИК области, или оснащаются светоделительными устройствами, обеспечивающими работу с длиной волны до 1,2 мкм. Настоящий стандарт применим и к данным, полученным с помощью таких приборов.

     2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 27176 Приборы спектральные оптические. Термины и определения

ГОСТ Р 57941 Композиты полимерные. Инфракрасная спектроскопия. Качественный анализ

ГОСТ Р 57987-2017 Композиты полимерные. Инфракрасная спектроскопия. Многомерный количественный анализ

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

     3 Термины и определения


В настоящем стандарте применены термины по ГОСТ 27176, а также следующие термины с соответствующими определениями:

3.1 взаимодействие (interactance): Явление, при котором лучистая энергия, проникающая в материал через участок поверхности, рассеивается материалом обратно к поверхности, однако к другому ее участку.

Примечание - Отличие взаимодействия от диффузного отражения заключается в том, что при диффузном отражении отраженное излучение выходит из области поверхности материала, которая подвергается облучению.

3.2 стандартный образец (эталонный образец, обучающий образец) (training sample, reference sample, standard): Материал с известным составом и/или характеристиками, использующийся для установления отношения между результатом измерения и составом и/или характеристиками образца.

Примечания

1 Термин "обучающий образец" обычно используется в компьютерных методах установления вышеописанного отношения, при так называемом "обучении" прибора.

2 К стандартным образцам для количественного анализа предъявляют несколько иные требования, чем к стандартным образцам для качественного анализа.

     4 Сущность метода


Качественный анализ с использованием спектроскопии в ближней ИК области проводят путем автоматизированного сравнения спектров известных материалов с неизвестными для идентификации последних. При этом используют метод библиотечного поиска, в отличие от спектроскопии в средней ИК области (см. ГОСТ Р 57491), где определение структуры неизвестного материала проводят по расположению, интенсивности и сдвигам положения отдельных полос поглощения.

Несмотря на то, что математические алгоритмы, описанные в настоящем стандарте, могут применяться к спектральным данным в любой области, в настоящем стандарте описывается их применение к спектроскопии в ближней ИК области.

Применение хемометрических методов к спектроскопии имеет ограничения, однако не все они пока установлены, т.к. метод является сравнительно новым. Одной из областей применения метода является исследование влияния низких концентраций примесей. Для достоверного определения загрязнителей необходимо знать о возможных загрязнителях, которые могут быть внесены в систему, и учитывать реальную возможность такого события, например, намеренным включением загрязненных образцов в набор для обучения прибора.

     5 Основные положения


Качественный анализ в ближней ИК области проводят путем сравнения спектров поглощения неизвестных материалов со спектрами известных эталонных материалов. Поскольку полосы поглощения многих веществ меньше различаются в ближней ИК области, чем в средней, аналитические способности данного метода существенно зависят от точности измерения поглощения и относительного поглощения при различных длинах волн. Идентифицируемые материалы измеряют с помощью спектрометра в ближней ИК области. Полученные данные сохраняют на ПК, подключенном к спектрометру. Затем используют один или несколько алгоритмов из раздела 6 для выработки критериев, которые в последующем применяют к спектроскопическим данным неизвестных образцов для их классификации (или идентификации), как совпадающих или нет с одним из ранее анализированных материалов. Для обеспечения воспроизводимости результатов должны соблюдаться правила надлежащей лабораторной практики. Подготовка и ввод проб в прибор должны быть одинаковы в рамках библиотеки. Обращение с неизвестными материалами должно быть точно таким же, как и со стандартными образцами.

Для анализа газов могут потребоваться специальные кюветы, обеспечивающие длину прохождения луча вплоть до 100 м. Спектры паров и газов могут быть чувствительны к общему давлению образца. Это устанавливают отдельно для каждого типа образцов.

Идентифицируемые неизвестные образцы могут предварительно разделяться по критериям, отличным от ИК-спектров (например, путем визуального осмотра). Все обучающие образцы (т.е. эталонные образцы для обучения алгоритмов тому, как могут выглядеть другие материалы) также могут предварительно группироваться в библиотеки подобных материалов (например, жидких и твердых). Затем неизвестные материалы сравнивают с библиотеками подходящих материалов. Предварительное группирование или сортировка уменьшает вероятность ложных определений, но требует осторожности, чтобы неизвестный материал, заведомо отсутствующий в библиотеке, не был определен как материал, имеющийся в библиотеке.

Измерения проводят на пропускания, отражения или другим способом, пригодным для получения ИК-спектров в ближней области. Чаще всего проводят измерения на пропускание и диффузное отражение.

Определение соотношения между интенсивностями поглощения при разных длинах волн для набора материалов и выработка на их основе критериев для идентификации данных материалов требует использования обучаемых компьютерных алгоритмов. Данные алгоритмы могут также учитывать посторонние изменения, которые возникают, например, при измерении порошков.

Для измерения в ближней ИК области имеется целый ряд коммерчески доступных приборов. Для обеспечения надлежащей работы, оптимальной точности и безопасности необходимо соблюдать указания, приведенные в руководстве по эксплуатации.

Проведение спектроскопии в ближней ИК области практически не требует подготовки проб или образцов. В связи с этим этапы подготовки проб в других спектроскопических методиках замещаются методами измерения проб. Наиболее распространены следующие методы:

- диффузное отражение - твердые материалы измельчают до порошкообразного состояния (или используют в полученном виде, если они представляют собой достаточно тонко измельченные порошки) и плотно утрамбовывают в кювету, чтобы можно было осветить поверхность пробы и измерить мощность отраженного излучения;

- пропускание-отражение - прозрачную или опалесцирующую жидкость помещают в кювету с прозрачным окном и находящимся позади образца экраном из рассеивающего свет материала. Излучение проходит через пробу и диффузно отражается экраном, что позволяет проводить измерения точно так же, как и измерения диффузного отражения порошков;

- пропускание - жидкую или твердую пробу помещают в кювету с двумя прозрачными стенками и измеряют проходящее сквозь нее излучение;

- оптоволоконные датчики - светоизлучающий и светоприемный волноводы параллельно прикладывают к образцу. В различных оптических "головках" для передачи излучения из оптоволокна в образец и обратно используется широкая гамма конфигураций оптики. С оптоволоконными датчиками можно использовать методы пропускания, отражения и взаимодействия. Измерения методом взаимодействия часто делаются простым прижатием пучка оптических волокон, содержащего как светоизлучающие, так и светоприемные волноводы, к поверхности образца.

Для применения математического аппарата к спектроскопическим данным обычно используют метод, заключающийся в следующем:

- спектральные измерения определяют некоторое многомерное пространство. Оси в данном пространстве - это интенсивности поглощения при различных длинах волн или величины, полученные их математическим преобразованием;

- группы спектров одного материала определяют область в многомерном пространстве;

- анализ заключается в определении того, в какую область попадает спектр неизвестного образца.

В данном аналитическом подходе существуют следующие проблемы: недостаточное разделение групп в многомерном пространстве для их классификации (недостаточные различия в спектрах материалов), неадекватное представление измерительной вариабельности в пределах групп в процессе обучения (недостаточное количество или разнообразие образцов для обучения), плохие пределы обнаружения примесных загрязнителей.

Для оптимизации методов к данным возможным проблемам создание метода проводится в три этапа. На первом этапе, обучении, прибором исследуют известные образцы. Собранные данные обрабатываются одним или несколькими алгоритмами и используют для "обучения" алгоритмов распознаванию различных других материалов.

На втором этапе, валидации, проверяют способность алгоритмов правильно распознавать материалы, не входившие в обучающий комплект. Крайне желательно, чтобы образцы, измеряемые в процессе валидации, находились в том же фазовом и физическом состоянии, что и обучающие образцы.

На третьем этапе, использовании, проводят измерение неизвестных образцов с последующим сравнением полученных данных с известными образцами в библиотеке и определением совпадения полученных данных с данными какого-либо известного материала. Неизвестный материал соотносится с образцом, характеризующимся наиболее близкими результатами.

Если полученные данные не согласуются ни с одним образцом из библиотеки, алгоритм может не идентифицировать образец.

Закупки не найдены
Свободные
Р
Заблокированные
Р
Роль в компании Пользователь

Для продолжения необходимо войти в систему

После входа Вам также будет доступно:
  • Автоматическая проверка недействующих стандартов в закупке
  • Создание шаблона поиска
  • Добавление закупок в Избранное