1
Доступно поисковых запросов: 1 из 2
Следующий пробный период начнётся: 10 октября 2022 в 05:44
Снять ограничение

ГОСТ Р ИСО 17734-1-2017

Анализ азоторганических соединений в воздухе методом жидкостной хроматографии и масс-спектрометрии. Часть 1. Определение изоцианатов по их дибутиламиновым производным
Действующий стандарт
Проверено:  02.10.2022

Информация

Название Анализ азоторганических соединений в воздухе методом жидкостной хроматографии и масс-спектрометрии. Часть 1. Определение изоцианатов по их дибутиламиновым производным
Название английское Determination of organonitrogen compounds in air using liquid chromatography and mass spectrometry. Part 1. Isocyanates using dibutylamine derivatives
Дата актуализации текста 01.01.2018
Дата актуализации описания 01.01.2021
Дата издания 09.09.2019
Дата введения в действие 01.12.2018
Область и условия применения Настоящий стандарт устанавливает общие положения по отбору и анализу проб на содержание изоцианатов, присутствующих в воздухе рабочей зоны. Если предполагают, что может произойти выделение изоцианатов [например, при термической деструкции в производстве полиуретанов (ПУ)], то кроме аминов и аминоизоционатов рекомендуется дополнительно определять амины и аминоизоцианаты с использованием ди-н-бутиламиновых производных (ДБА) и этилхлорформиата в качестве реагентов (ИСО 17734-2)
Опубликован Официальное издание. М.: Стандартинформ, 2019 год
Утверждён в Росстандарт
Взамен ГОСТ Р ИСО 17734-1-2009ГОСТ недействующий

Расположение в каталоге ГОСТ


ГОСТ Р ИСО 17734-1-2017

     

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ


АНАЛИЗ АЗОТОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В ВОЗДУХЕ МЕТОДОМ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ И МАСС-СПЕКТРОМЕТРИИ


Часть 1


Определение изоцианатов по их дибутиламиновым производным


Determination of organonitrogen compounds in air using liquid chromatography and mass spectrometry. Part 1. Isocyanates using dibutylamine derivatives



ОКС 13.040.30

Дата введения 2018-12-01

     

Предисловие

1 ПОДГОТОВЛЕН Открытым акционерным обществом "Научно-исследовательский центр контроля и диагностики технических систем" (АО "НИЦ КД") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 457 "Качество воздуха"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 14 сентября 2017 г. N 1119-ст

4 Настоящий стандарт идентичен международному стандарту ИСО 17734-1:2013* "Анализ азоторганических соединений в воздухе методом жидкостной хроматографии и масс-спектрометрии. Часть 1. Определение изоцианатов по их дибутиламиновым производным" (ISO 17734-1:2013 "Determination of organonitrogen compounds in air using liquid chromatography and mass spectrometry - Part 1: Isocyanates using dibutylamine derivatives", IDT).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

     


Международный стандарт разработан Техническим комитетом ТС 146/SC 2.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА

5 ВЗАМЕН ГОСТ Р ИСО 17734-1-2009

6 ПЕРЕИЗДАНИЕ. Август 2019 г.


Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение


Изоцианаты используют в промышленности уже более 50 лет. Они являются важными химическими соединениями, находящими широкое применение в химической промышленности, главным образом в производстве полиуретанов (ПУ). Несмотря на предпринимаемые меры контроля предельных воздействий, в некоторых промышленных секторах последствия воздействия изоцианатов на здоровье людей могут быть неблагоприятными и выражаться в форме астмы, контактных дерматитов и аллергической пневмонии.

Аналитический метод определения изоцианатов в воздухе рабочей зоны должен обладать достаточной чувствительностью из-за их сильно раздражающих и сенсибилизирующих свойств. Во многих странах установлены низкие предельно допустимые уровни профессионального воздействия, однако в большинстве случаев необходимо определять содержание значительно ниже этих уровней (<1/100). Изоцианаты являются высоко реакционноспособными и поэтому не могут быть проанализированы напрямую. Для предотвращения реакций с мешающими веществами при отборе проб необходимо применить реакцию дериватизации (получение производных) изоцианатов. В промышленности используют сотни различных изоцианатов, но гораздо большее их число образуется при термической деструкции ПУ. Поэтому для получения точных результатов метод анализа должен быть высокоселективным.

________________

Допустимым уровням профессионального воздействия в Российской Федерации соответствуют предельно допустимые концентрации (ПДК). Прим. ТК 457 "Качество воздуха".


Определение изоцианатов в воздухе рабочей зоны с использованием ди-н-бутиламина (ДБА) в качестве реагента с последующим анализом методом жидкостной хроматографии с масс-спектрометрическим детектированием (ЖХ-МС) оказалось достаточно надежным. Разработка нового метода была предпринята в связи с появлением трудностей при отборе проб на содержание изоцианатов в сложных газовых средах (например, при анализе продуктов термической деструкции ПУ, [1], [2], [3]) при использовании старых методов. Было обнаружено, что скорость реакции ДБА с изоцианатами высокая, при этом можно использовать высокие концентрации для обеспечения мгновенного протекания реакции и для того, чтобы избежать проблем с мешающими веществами [4], [5]. Использование импинджера с раствором реактива с последовательно подсоединенным фильтром позволяет эффективно улавливать и переводить изоцианаты в производные в газообразном состоянии и в виде твердых частиц [5]. Использование ЖХ-МС/МС метода анализа ди-н-бутиламиновых производных (ДБА-производных) изоцианатов обеспечивает высокоселективное и прецизионное определение изоцианатов до 10 при определении допустимого уровня профессионального воздействия [7].

Отбор проб без использования растворителя может быть осуществлен с использованием трубки со вставленным в нее фильтром из стекловолокна, пропитанным ДБА, следом за которым размещен еще один пропитанный ДБА фильтр. Для пропитки используют раствор, содержащий ДБА и кислоту, при этом образуется ионная пара, за счет чего понижается летучесть ДБА. В результате ДБА остается на фильтре даже спустя 8 ч после отбора пробы [8].

Мономерные изоцианаты, образующиеся в процессе термической деструкции полимеров [обычно полиуретанов и фенолформальдегидкарбамидных (ФФК) сополимеров], такие как изоциановая кислота и метилизоцианат, также могут быть определены методом, приведенным в [6], [7], [8], [9], [10]. Летучие ДБА-производные могут быть определены методом газовой хроматографии ГХ-МС [9]. Использование метода с применением ДБА и получение производных по реакции с этилхлорформиатом позволяют одновременно определять амины, аминоизоцианаты и изоцианаты в соответствии с ИСО 17734-2.

Для количественного определения необходимы стандартные соединения, но они имеются только для небольшого числа мономерных изоцианатов. Большинство изоцианатов, используемых в промышленности при производстве ПУ, могут быть получены только в виде технических смесей. Многие изоцианаты, образующиеся в процессе термической деструкции ПУ, недоступны для выделения и их сложно синтезировать. В настоящем стандарте установлен метод количественного определения изоцианатов в контрольных растворах с использованием чувствительного к азоту термоионного детектора. Было показано, что применение этого метода вместе с МС исследованием значительно облегчает процесс приготовления стандартных растворов [10], [11], [12].

Для количественного определения изоцианатов в сложных смесях необходимо применять МС-детектирование, как наилучший метод обнаружения, которое обеспечивает единственную возможность идентификации неизвестных соединений. Этот метод позволяет оценить новые области, для которых воздействие изоцианатов было неизвестно, и идентифицировать новые виды изоцианатов в воздухе рабочей зоны [6]-[12].

     1 Область применения


Настоящий стандарт устанавливает общие положения по отбору и анализу проб на содержание изоцианатов, присутствующих в воздухе рабочей зоны. Если предполагают, что может произойти выделение изоцианатов [например, при термической деструкции в производстве полиуретанов (ПУ)], то кроме аминов и аминоизоцианатов рекомендуется дополнительно определять амины и аминоизоцианаты с использованием ди-н-бутиламиновых производных (ДБА) и этилхлорформиата в качестве реагентов (ИСО 17734-2).

Метод применяют для определения широкого спектра разнообразных изоцианатов в газообразном состоянии и в виде твердых взвешенных частиц. Типичные монофункциональные изоцианаты, которые могут быть определены с использованием этой методики, - изоциановая кислота (ИЦК), метилизоцианат (МИЦ), этилизоцианат (ЭИЦ), пропилизоцианат (ПИЦ), бутилизоцианат (БИЦ) и фенилизоцианат (ФИЦ). К типичным определяемым мономерным диизоцианатам относятся 1,6-гексаметилен диизоцианат (ГДИ), 2,4- и 2,6-толуол диизоцианат (ТДИ), 4,4'-дифенилметан диизоцианат (МДИ), 1,5-нафтил диизоцианат (НДИ), изофорон диизоцианат (ИФДИ) и 4,4'-дициклогексилметан диизоцианат (ГМДИ). Могут быть также определены многофункциональные изоцианаты - олигомеры полимерных МДИ, биуретовые, изоцианоуратные, аллофанатные аддукты и форполимерные формы изоцианатов.

Предел обнаружения для алифатических изоцианатов составляет около 5 нмоль на пробу, для ароматических - 0,22 нмоль на пробу. При объеме пробы воздуха 15 дм для ГДИ и ТДИ эти величины составляют 0,6 нг/м и 0,02 нг/м соответственно.

При объеме пробы воздуха 5 дм диапазон измерений настоящим методом составляет приблизительно от 0,001 мкг/м до 200 мг/м для ТДИ.

     2 Нормативные ссылки


В настоящем стандарте использованы ссылки на следующие стандарты:

ISO 5725-2, Accuracy (trueness and precision) of measurement methods and results - Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method [Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений]

ISO 16200-1, Workplace air quality - Sampling and analysis of volatile organic compounds by solvent desorption/gas chromatography - Part 1: Pumped sampling method (Качество воздуха рабочей зоны. Отбор проб летучих органических соединений с последующей десорбцией растворителем и газохроматографическим анализом. Часть 1. Отбор проб методом прокачки)       

     3 Основные положения


Пробы отбирают путем пропускания известного объема воздуха через миниатюрный импинджер, за которым расположен фильтр. Используют импинджер с 10 см раствора ДБА в толуоле с концентрацией 0,01 моль/дм и фильтр из стекловолокна без держателя.

Отбор проб без использования растворителя осуществляют путем пропускания воздуха через трубку со вставленным в нее свернутым фильтром из стекловолокна, пропитанным ДБА, с идущим за ним пропитанным фильтром. Для пропитки используют раствор, содержащий ДБА и уксусную кислоту; за счет образования ионной пары понижается летучесть ДБА и обеспечивается возможность проведения долговременного отбора проб.

После отбора проб к растворам проб добавляют дейтерированные ДБА-производные изоцианата (используемые в качестве внутреннего стандарта). Избыток реактива и растворителя выпаривают, а пробы растворяют в ацетонитриле. Пробы анализируют методом ЖХ с обращенной фазой и масс-спектрометрического детектора с электроспреем (ЭСП-МС) в режиме регистрации положительно заряженных ионов. Количественное определение проводят путем регистрации избранных ионов (см. рисунок 1).

     
Рисунок 1 - Описание основных принципов методики


Количественное определение и качественные оценки могут быть выполнены методами ЖХ в сочетании с МС или ЖХ-МС/МС по различным методикам. Для определения высоких концентраций изоцианатов используют хемилюминесцентный детектор (ЖХ-ХЛД) или, в случае ароматических изоцианатов, - ультрафиолетовый детектор (ЖХ-УФД).

Количественный анализ образцов сравнения может быть получен с помощью ЖХ-ХЛД. Для определения летучих соединений также может быть использован газохроматографический термоионный детектор (ТИД).

     4 Реактивы и материалы

4.1 Реагент ДБА

Серийно выпускаемый ди-н-бутиламин, ч.д.а.

4.2 Растворители

Растворитель для реагента, обычно толуол, и другие растворители, такие как ацетонитрил, изооктан и метанол, должны быть класса "чистый" для жидкостной хроматографии.

4.3 Муравьиная кислота

Используют концентрированную муравьиную кислоту (ч.д.а).

4.4 Уксусная кислота

Используют концентрированную уксусную кислоту (ч.д.а).

4.5 Серная кислота

Используют серную кислоту концентрацией 5 ммоль. Для этого в 1000 см воды добавляют 0,27 см концентрированной серной кислоты (98%).

4.6 Раствор реагента

В мерной колбе вместимостью 1 дм растворяют 1,69 см ДБА в толуоле и доводят объем раствора до метки. Раствор является стабильным, поэтому при хранении не обязательно принимать специальные меры.

4.7 Раствор реагента для отбора проб без растворителя

4.7.1 Раствор ДБА-1 с концентрацией 0,74 моль/дм

Смешивают 80 см метанола и 12,5 см ДБА в мерной колбе вместимостью 100 см. Затем при помешивании постепенно добавляют в колбу 4,16 см уксусной кислоты. Затем объем раствора доводят до метки метаном.

4.7.2 Раствор ДБА-2 с концентрацией 1,5 моль/дм

Смешивают 60 см метанола и 25 см ДБА в мерной колбе вместимостью 100 см. Затем при помешивании постепенно добавляют в колбу 8,32 см уксусной кислоты. Затем объем раствора доводят до метки метаном.

4.8 Подвижные фазы для высокоэффективной жидкостной хроматографии
     


    4.8.1 Жидкостная хроматография с масс-спектрометрическим детектированием

Слабая подвижная фаза (подвижная фаза А) представляет собой смесь воды/ацетонитрила (с объемным отношением 95/5) и 0,05% муравьиной кислоты. Сильная подвижная фаза (подвижная фаза В) представляет собой смесь воды/ацетонитрила (с объемным отношением 5/95) и 0,05% муравьиной кислоты. Перед использованием подвижные фазы дегазируют.

4.8.2 Жидкостная хроматография с использованием хемилюминесцентного азотного детектора

Слабая подвижная фаза (подвижная фаза С) представляет собой смесь воды/метанола (с объемным отношением 95/5) и 0,05% муравьиной кислоты. Сильная подвижная фаза (подвижная фаза D) представляет собой смесь воды/метанола (с объемным отношением 5/95) и 0,05% муравьиной кислоты. Перед использованием подвижные фазы дегазируют.

     5 Приготовление стандартных растворов

     5.1 Стандартные соединения


Стандартные соединения необходимы для определения производных изоцианатов ЖХ-МС-методом. Для серийно выпускаемых изоцианатов ДБА-производные легко приготовить путем прямой дериватизации по реакции с ДБА. ДБА-производные изоцианатов, которые не имеются в продаже, могут быть приготовлены на основе исходных сыпучих веществ, используемых при производстве полиуретанов (ПУ), или на основе продуктов термической деструкции ПУ или карбамидных сополимеров, используемых в рабочей зоне. В качестве альтернативы могут быть использованы стандартные растворы, доступные коммерчески (см. приложение С).

     5.2 Ди-н-бутиламиновые производные изоцианатов

5.2.1 Приготовление ДБА-производных изоцианатов из серийно выпускаемых изоцианатов

Многие часто используемые изоцианаты, такие как ГДИ, 2,4- и 2,6-ТДИ, 4,4'-МДИ, 4,4'-ГМДИ, 1,5-НДИ, ИФДИ, ФИЦ, МИЦ, ЭИЦ, ПИЦ и БИЦ, выпускаются серийно фирмами, поставляющими лабораторные реактивы. Такие изоцианаты имеют различную чистоту, некоторые содержат изомеры.

Стандартные растворы приготавливают путем введения точно взвешенных количеств или определенных объемов (приблизительно 0,1 ммоль) изоцианатов в 100 см изооктана. Далее 1 см полученного раствора добавляют к 100 см раствора ДБА в толуоле с концентрацией 0,01 моль/дм (приблизительно 0,01 мкмоль/см ДБА-производного).

Процедура для синтеза производных следующая:

- растворяют аликвоту, соответствующую 6 ммоль изоцианата, в 2 см изооктана;

- растворяют аликвоту, соответствующую 60 ммоль ДБА, в 20 см изооктана;

- добавляют раствор изоцианата к раствору ДБА по капле при непрерывном перемешивании;

- выпаривают полученную реакционную смесь до сухого остатка в роторном испарителе;

- сушат остаток под вакуумом для удаления избытка ДБА.

Также можно приготовить ДБА-производные изоцианатов путем улавливания продуктов термической деструкции соответствующих эфиров карбаминовой кислоты в импинджерной колбе, содержащей раствор ДБА (см. 5.2.3.3).

5.2.2 Приготовление ДБА-производных ИЦК и МИЦ

При термическом разложении мочевины образуется изоциановая кислота (ИЦК).

Нагревают некоторое количество мочевины (20 мг) до приблизительно 300°С в стеклянной пробирке. Улавливают продукты разложения в импинджерной колбе, содержащей раствор ДБА в толуоле (0,5 моль/дм). Смывают раствор толуола, содержащий ДБА-производные ИЦК водой, после чего органическую фракцию выпаривают в вакуумной центрифуге, а остаток растворяют в метаноле. Определяют качественный и количественный состав раствора в соответствии с 5.2.4.

Аналогичную методику можно применять для приготовления ДБА-производных МИЦ путем улавливания продуктов термического разложения 1,3-диметилмочевины.

5.2.3 Приготовление ДБА-производных дейтерированных изоцианатов

5.2.3.1 Внутренние стандарты

Для точного количественного определения при применении метода ЖХ-МС важно использовать соответствующие внутренние стандарты не только для компенсации возможных отклонений в процедуре подготовки, но также для компенсации флуктуации выходного сигнала масс-спектрометра. В идеальном случае каждый аналит должен иметь дейтерированный аналог. Для определения ДБА-производных изоцианатов в качестве внутренних стандартов можно использовать ДБА-производные дейтерированных изоцианатов или - и -ДБА-производные изоцианатов.

На качество количественного определения влияет число замещенных на дейтерий атомов водорода внутреннего стандарта (меньшее число атомов дейтерия в молекуле позволяет получить более высокую прецизионность). Проведение структурной идентификации с использованием массовой спектрометрии и тандемной массовой спектрометрии имеет преимущества в том случае, когда атомы водорода замещены на атомы дейтерия в изоцианате, а не в ДБА. Тогда можно различать меченые и немеченые фрагменты, которые происходят от самого изоцианата. Поэтому идеальными внутренними стандартами являются ДБА-производные дейтерированных изоцианатов. Однако их приготовление очень трудоемко, и они имеются в наличии только для небольшого числа изоцианатов.

Легко приготовить - и -ДБА-производные изоцианатов, а любой изоцианат технической смеси или изоцианат, являющийся продуктом термического разложения, может быть переведен в производное и использован в качестве внутреннего стандарта.

5.2.3.2 -ДБА- и -ДБА-производные дейтерированных изоцианатов

Растворяют аликвоту, содержащую 10 ммоль соответствующего дейтерированного амина, в 20 см толуола. После этого добавляют 150 мм пиридина и 40 см раствора NaOH (концентрация 5 моль/дм). Затем по капле добавляют 1,5 см этилхлорформиата при непрерывном помешивании. По истечении 10 мин отделяют толуоловую фракцию и выпаривают растворитель.

Помещают остаток, содержащий образовавшийся аминокарбаминовый эфир (10 мм), в стеклянную пробирку. Нагревают пробирку приблизительно до 300°С. Подсоединив пробирку к импинджерной колбе, содержащей раствор ДБА с концентрацией 0,5 моль/дм в толуоле, улавливают образовавшийся дейтерированный изоцианат в виде ДБА-производного. Выпаривают растворитель и растворяют остаток в метаноле для получения соответствующей концентрации. Получают характеристики раствора в соответствии с 5.2.4.

5.2.3.3 - и -ДБА-производные изоцианатов

Приготавливают - и -ДБА-производные изоцианатов, растворяя точно взвешенные количества изоцианатов в 10 см толуола для получения раствора -ДБА или -ДБА в толуоле с концентрацией 0,1 моль/дм.

Приготавливают дейтерированные производные ИЦК и МИЦ, поместив некоторое количество (20 мг) мочевины (для ИЦК) и 1,3-диметилмочевины (для МИЦ) в стеклянную пробирку. Нагревают пробирку до приблизительно 300°С и улавливают образовавшиеся ИЦК и МИЦ в импинджерных колбах с раствором -ДБА или -ДБА с концентрацией 0,1 моль/дм в толуоле. Выпаривают растворы -ДБА- или -ДБА-производных изоцианатов до сухого остатка и растворяют остатки в метаноле. Получают характеристики раствора в соответствии с 5.2.4.

5.2.4 Качественный и количественный анализ растворов

Растворы разбавляют метанолом до соответствующих концентраций и проводят качественный анализ методом ЖХ-МС и количественный анализ, применяя ЖХ-ХЛД. Метод является специфичным по отношению к азоту, и любое азотсодержащее соединение может быть использовано в качестве внутреннего стандарта, например кофеин. Подобный метод для других аналитических задач приведен в рамках различных областей применений [13], [14], [15]. Количественно летучие ДБА-производные изоцианатов могут быть также определены с использованием ГХ-ТСД.

     5.3 ДБА-производные изоцианатов из технической смеси

5.3.1 Приготовление растворов ДБА-производных изоцианатов

Технические изоцианаты, используемые в промышленности, обычно серийно выпускаются в виде смесей, таких как олигомеры полимерных МДИ, биурет-, изоцианоурат- и алофанатных аддуктов и форполимерных форм изоцианатов. Эти изоцианаты, как правило, являются многофункциональными.

Если сопроводительные документы имеются и они корректно составлены, то для изоцианатов технического сорта стандартные растворы могут быть приготовлены способом, описанным в 5.2.1, путем добавления известного количества изоцианата к раствору ДБА в толуоле. Если качество данных по составу и содержанию различных изоцианатов вызывает сомнение или они отсутствуют, то должен быть проведен качественный и количественный анализ технической смеси изоцианатов и должен быть охарактеризован изоцианатный продукт.

Методика приготовления стандартных растворов изоцианатов технического сорта следующая:

- добавляют 10 мг изоцианатного продукта в виалу вместимостью 10 см с раствором ДБА концентрацией 0,5 моль/дм;

- воздействуют на раствор ультразвуком и после этого выпаривают его до сухого остатка, который затем растворяют в метаноле;

- разбавляют раствор метанолом для получения соответствующих концентраций;

- получают характеристики раствора в соответствии с 5.3.2.

5.3.2 Качественный и количественный анализ

Если известно, какие изоцианаты входят в состав изоцианатного продукта или имеются в наличии стандартные соединения, то стандартные растворы приготавливают в соответствии с 5.2.1.

Если не известно, какие изоцианаты входят в состав изоцианатного продукта, то проводят качественный анализ на основе хроматограмм дериватизованного изоцианатного продукта, полученных в режиме полного сканирования по масс-спектру. Полученные данные по составу продукта вместе с данными, полученными с применением ЖХ-ХЛД, позволяют вычислить концентрации различных компонентов в растворе. Проанализированный раствор пробы изоцианатного продукта используют в качестве градуировочного раствора для ЖХ-МС.

При определении форполимерных форм изоцианатов или изоцианатных комплексов количественное определение каждого индивидуального изоцианата методом ЖХ-МС может быть затруднено, однако один или несколько компонентов могут быть использованы в качестве основных соединений. Общее содержание изоцианатных групп (ОСИЦ) в продукте может быть найдено путем титрования ДБА [16] и могут быть приготовлены стандартные растворы (путем разбавления). Концентрацию изоцианатов в пробе воздуха оценивают на основе сравнения площадей пиков. Это может быть осуществлено в том случае, если в состав изоцианатного продукта входят те же изоцианаты, которые присутствуют в воздухе. Полученный результат представляет собой общее содержание изоцианатов в воздухе. При этом пределы обнаружения увеличиваются пропорционально на коэффициент отношения общего содержания изоцианатов к предполагаемому содержанию основного изоцианата. Тем не менее, в большинстве случаев можно определить уровень содержания ниже 1/10 предельно допустимой концентрации.

     5.4 ДБА-производные изоцианатов, являющихся продуктами термической деструкции полиуретанов или полимеров на основе мочевины

5.4.1 Приготовление

При термической деструкции, например ПУ или полимеров на основе мочевины, образуются изоцианаты, которые не выпускают серийно. ПУ или полимеры на основе мочевины могут быть разрушены при соответствующей температуре. Выделяемые при разложении продукты улавливают в импинджерной колбе (с подсоединенным последовательно фильтром) с раствором ДБА концентрацией 0,5 моль/дм. Растворы выпаривают до сухого остатка, а остатки растворяют в метаноле.

5.4.2 Качественный и количественный анализ

Качественный анализ проводят методом ЖХ-МС. Полученные структурные данные вместе с данными, полученными с применением ЖХ-ХЛД, позволяют вычислить массовые концентрации различных компонентов раствора. Разбавленный раствор пробы с известными характеристиками используют в качестве градуировочного стандарта для ЖХ-МС.

     5.5 Стабильность


Растворы ДБА-производных изоцианатов (МДИ, 2,4- и 2,6-ТДИ, ГДИ, ИФДИ, ФИЦ, БИЦ, ПИЦ, ЭИЦ, МИЦ и ИЦК) в толуоле, ацетонитриле и метаноле остаются стабильными в течение 6 мес хранения при температуре 8°С. ДБА-производное НДИ имеет ограниченную стабильность, поэтому необходимо готовить и определять его количественный состав перед каждым использованием в качестве градуировочного раствора.

     6 Аппаратура

     6.1 Устройство отбора проб


В качестве устройства для отбора проб можно использовать любой импинджер (6.1.3), соединенный последовательно с фильтром (6.1.1) и насосом для отбора проб (6.1.5) через устройство для улавливания пара (6.1.7), или пробоотборник без растворителя (6.1.4), соединенный с насосом (6.1.5).

6.1.1 Фильтр

Используют фильтр из стекловолокна диаметром 13 мм (без связующего вещества) с размером пор 0,3 мкм.

6.1.2 Фильтродержатель

Используют фильтродержатель, изготовленный из полипропилена, диаметром 13 мм с наконечником Люэра.

6.1.3 Миниатюрный импинджер

Миниатюрный импинджер состоит из емкости и конусообразной входной трубки. Соединяют две его части таким образом, чтобы расстояние между входным отверстием и дном приемника импинджера составляло от 1 до 2 мм. Держатель фильтра присоединяют к выходному отверстию импинджера при помощи импинджера с наконечником Люэра. В качестве альтернативы держатель фильтра присоединяют к выходному отверстию импинджера гибкими трубками.

6.1.4 Устройство отбора проб без растворителя

Вырезают фильтры двух типов из листа стекловолокна типа MG 160 с размером пор 0,3 мкм:

- прямоугольный фильтр размером 2,5х5,7 см;

- прямоугольный фильтр размером 1,4х5,7 см;

- круглый фильтр диаметром 13 мм.

При подготовке устройства для отбора проб различные фильтры вставляют в трубки и фильтродержатель непропитанными. Внутренняя часть трубки выровнена в одну линию с фильтром 1 (2,5 см х 5,7 см) таким образом, чтобы закрывались внутренние стенки трубки. Фильтр 2 (1,4 см х 5,7 см) сгибают в форме "V" и также помещают в трубку для повышения эффективности улавливания, увеличивая число каналов в трубке.

Далее фильтры в высушенном пробоотборнике по каплям пропитывают 1,5 см 1,4-молярного раствора ДБА-уксусной кислоты в метаноле. После пропитывания трубку сушат путем продувания азота до испарения метанола.

Фильтры со скругленным концом (диаметром 13 мм) пропитывают 100 мм 0,7-молярного раствора ДБА-уксусной кислоты и высушивают азотом в открытых кассетах. Когда растворитель полностью испарится, конец фильтра вставляют в сепаратор. Затем наполненный пробоотборник изолируют с обоих концов. Пропитывание и высушивание фильтров выполняют в камере с азотом, чтобы избежать загрязнения.

В качестве альтернативы можно использовать коммерчески доступный пробоотборник (см. приложение С).

     
Рисунок 2 - Схема устройства отбора проб без растворителя

6.1.5 Насос для отбора проб, соответствующий требованиям [21], способный к поддержанию расхода 1 дм/мин для отбора проб с использованием импинджера и фильтра и расхода 0,2 дм/мин для отбора проб без растворителя в течение отбора проб.

6.1.6 Трубки

Используют резиновые трубки подходящей длины и соответствующего диаметра, обеспечивающие герметичное подсоединение к насосу и к выходному отверстию устройства отбора проб.

6.1.7 Ловушка для пара

Используют ловушку (внутренним диаметром 17 мм и длиной 140 мм), заполненную активированным углем (со средним размером частиц не более 3 мм), размещенную между устройством для отбора проб (импинджером и фильтром) и насосом для отбора проб. Это необходимо для предохранения насоса от паров толуола. Активированный уголь в ловушке для пара необходимо часто заменять и перерабатывать в зависимости от времени отбора проб.

     6.2 Расходомер


Закупки не найдены
Свободные
Р
Заблокированные
Р
Роль в компании Пользователь

Для продолжения необходимо войти в систему

После входа Вам также будет доступно:
  • Автоматическая проверка недействующих стандартов в закупке
  • Создание шаблона поиска
  • Добавление закупок в Избранное