1
Доступно поисковых запросов: 1 из 2
Следующий пробный период начнётся: 02 октября 2022 в 13:49
Снять ограничение

ГОСТ Р ИСО 17734-2-2017

Анализ азоторганических соединений в воздухе методом жидкостной хроматографии и масс-спектрометрии. Часть 2. Определение аминов и аминоизоцианатов по их дибутиламиновым и этилхлорформиатным производным
Действующий стандарт
Проверено:  24.09.2022

Информация

Название Анализ азоторганических соединений в воздухе методом жидкостной хроматографии и масс-спектрометрии. Часть 2. Определение аминов и аминоизоцианатов по их дибутиламиновым и этилхлорформиатным производным
Название английское Determination of organonitrogen compounds in air using liquid chromatography and mass spectrometry. Part 2. Amines and aminoisocyanates using dibutylamine and ethyl chloroformate derivatives
Дата актуализации текста 01.01.2018
Дата актуализации описания 01.01.2021
Дата издания 09.09.2019
Дата введения в действие 01.12.2018
Область и условия применения Настоящий стандарт устанавливает общие положения по отбору и анализу проб на содержание аминов и аминоизоцианатов, присутствующих в воздухе рабочей зоны. Рекомендуется определять амины и аминоизоцианаты совместно с изоцианатами с использованием ди-н-бутиламина (ДБА) в качестве реагента
Опубликован Официальное издание. М.: Стандартинформ, 2019 год
Утверждён в Росстандарт
Взамен ГОСТ Р ИСО 17734-2-2009ГОСТ недействующий

Расположение в каталоге ГОСТ


ГОСТ Р ИСО 17734-2-2017

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

АНАЛИЗ АЗОТОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В ВОЗДУХЕ МЕТОДОМ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ И МАСС-СПЕКТРОМЕТРИИ

Часть 2

Определение аминов и аминоизоцианатов по их дибутиламиновым и этилхлорформиатным производным

Determination of organonitrogen compounds in air using liquid chromatography and mass spectrometry. Part 2. Amines and aminoisocyanates using dibutylamine and ethyl chloroformate derivatives

ОКС 13.040.30

Дата введения 2018-12-01

Предисловие

1 ПОДГОТОВЛЕН Открытым акционерным обществом "Научно-исследовательский центр контроля и диагностики технических систем" (АО "НИЦ КД") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 457 "Качество воздуха"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 14 сентября 2017 г. N 1120-ст

4 Настоящий стандарт идентичен международному стандарту ИСО 17734-2:2013* "Анализ азоторганических соединений в воздухе методом жидкостной хроматографии и масс-спектрометрии. Часть 2. Определение аминов и аминоизоцианатов по их дибутиламиновым и этилхлорформиатным производным" (ISO 17734-2:2013 "Determination of organonitrogen compounds in air using liquid chromatography and mass spectrometry - Part 2: Amines and aminoisocyanates using dibutylamine and ethyl chloroformate derivatives", IDT).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.


Международный стандарт разработан Техническим комитетом ТС 146/SC 2.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА

5 ВЗАМЕН ГОСТ Р ИСО 17734-2-2009

6 ПЕРЕИЗДАНИЕ. Август 2019 г.


Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение

В случаях, если изоцианаты рассматривают в качестве загрязнителей воздуха рабочей зоны, необходимо исследовать воздух на присутствие аминоизоцианатов и аминов. В процессе термической деструкции полиуретанов (ПУ) образуются не только изоцианаты, но и амины и аминоизоцианаты [1]-[6].

Определение изоцианатов в воздухе рабочей зоны с использованием ди-н-бутиламина (ДБА) в качестве реагента представляется достаточно надежным методом анализа [20]. Использование метода с применением ДБА и получение производных с этилхлорформиатом при последующей подготовке пробы позволяет проводить определение при совместном содержании аминов, аминоизоцианатов и изоцианатов [6, 7].

Для количественного определения производных аминов и аминоизоцианатов необходимы стандартные соединения, однако они доступны только для небольшого числа диаминов. Аминоизоцианаты не могут быть проанализированы напрямую, поскольку они взаимодействуют друг с другом. В настоящем стандарте установлен метод количественного определения производных аминов и аминоизоцианатов в растворах сравнения с использованием хемилюминесцентного детектора. Показано, что применение этого метода совместно с масс-спектрометрическим исследованием значительно облегчает процесс приготовления стандартных растворов [6].

     1 Область применения

Настоящий стандарт устанавливает общие положения по отбору и анализу проб на содержание аминов и аминоизоцианатов, присутствующих в воздухе рабочей зоны. Рекомендуется определять амины и аминоизоцианаты совместно с изоцианатами с использованием ди-н-бутиламина (ДБА) в качестве реагента [20].

Метод, установленный настоящим стандартом, применяют для совместного определения аминов - 4,4'-метилендифенилдиамина (4,4'-МДА), 2,4- и 2,6-толуолдиамина (2,4-, 2,6-ТДА) и 1,6-гексаметилендиамина (1,6-ГДА) и соединений, содержащих изоцианатную и аминную группы, - 4,4'-метилендифениламиноизоцианата (4,4'-МАИ), 2,4-, 4,2- и 2,6-толуоламиноизоцианата (2,4-, 4,2-, 2,6-ТАИ), 1,6-гексаметиленаминоизоцианата (1,6-ГАИ). Метод пригоден для улавливания аминов и аминоизоцианатов в газообразном состоянии и в виде твердых частиц. Предел обнаружения для аминов составляет около 50 нмоль, для аминоизоцианатов - приблизительно 3 нмоль. При объеме пробы воздуха 15 дм для ТДА и ТАИ эти значения соответствуют 0,4 нг/м и 0,03 нг/м.

     2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ISO 16200-1 Workplace air quality - Sampling and analysis of volatile organic compounds by solvent desorption/gas chromatography - Part 1: Pumped sampling method (Качество воздуха рабочей зоны. Отбор проб летучих органических соединений с последующей десорбцией растворителем и газохроматографическим анализом. Часть 1. Отбор проб методом прокачки)

ISO 5725-2 Accuracy (trueness and precision) of measurement methods and results - Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method [Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений]

     3 Основные положения

Метод позволяет проводить отбор и совместный анализ проб на содержание аминов, аминоизоцианатов и изоцианатов. В настоящем стандарте изложен метод определения аминов и аминоизоцианатов, а метод определения только изоцианатов приведен в ИСО 17334-1.

Пробы отбирают путем прокачивания известного объема воздуха через портативную импинджерную колбу, за которой расположен фильтр. Используют импинджер с 10 см раствора ди-н-бутиламина (ДБА) в толуоле концентрацией 0,01 моль/дм и фильтр из стекловолокна без держателя. После отбора проб к растворам проб добавляют дейтерированные этилхлорформиатные производные аминов (ЭХФ-производные) и ДБА-производные изоцианатов (используемые в качестве внутреннего стандарта). Избыток реактива и растворителя выпаривают, а пробы растворяют в ацетонитриле. Пробы анализируют методом жидкостной хроматомасс-спектрометрии (ЖХ-МС) с обращенной фазой с электрораспылительной ионизацией (ЭРИ) в режиме регистрации положительно заряженных ионов. Количественное определение проводят путем регистрации избранных ионов.

     
Рисунок 1 - Основные этапы описанного метода

Количественное определение и качественные оценки могут быть выполнены с использованием различных методик ЖХ-МС. Для определения изоцианатов с высокими концентрациями допускается использовать методику ЖХ-ХЛД (хемилюминесцентный детектор азота), а для ароматических изоцианатов, аминоизоцианатов и аминов - ЖХ-УФД (ультрафиолетовый детектор). Стандартные соединения могут быть проанализированы методами ЖХ-МС/ХЛД. Для идентификации летучих соединений может быть использован газохроматографический термоионный детектор (ТИД).

     4 Реагенты и материалы

4.1 Реагент ДБА

Серийно выпускаемый ди-н-бутиламин (ДБА), ч.д.а.

4.2 Этилхлорформиат

Серийно выпускаемый этилхлорформиат (ЭХФ), ч.д.а.

4.3 Раствор реагента

В мерной колбе вместимостью 1 дм растворяют 1,69 см ДБА в толуоле и доводят объем раствора до метки. Раствор стабилен, и не обязательно при хранении принимать специальные меры.

4.4 Гидроксид натрия, 5 моль/дм

В лабораторном стаканчике в воде растворяют 200 г NaOH, переносят раствор в мерную колбу вместимостью 1 дм и доводят объем раствора до метки.

4.5 Пиридин

Пиридин, ч.д.а.

4.6 Растворители

Растворитель для реагента, как правило толуол и другие растворители - ацетонитрил и метанол - должны быть класса чистоты для жидкостной хроматографии.

4.7 Муравьиная кислота

Концентрированная муравьиная кислота, ч.д.а.

4.8 Этанол

Безводный этанол, ос.ч., с содержанием основного вещества 99,5%.

4.9 Подвижные фазы для ВЭЖХ

4.9.1 ЖХ-МС

Слабая подвижная фаза (подвижная фаза А) представляет собой смесь воды/ацетонитрила (с отношением по объему 95/5) и 0,05% муравьиной кислоты. Сильная подвижная фаза (подвижная фаза В) представляет собой смесь воды/ацетонитрила/метанола (с отношением по объему 5/70/25) и 0,05% муравьиной кислоты. Перед использованием подвижные фазы дегазируют.

4.9.2 ЖХ-ХЛД

Слабая подвижная фаза (подвижная фаза C) представляет собой смесь воды/метанола (с отношением по объему 95/5) и 0,05% муравьиной кислоты. Сильная подвижная фаза (подвижная фаза D) представляет собой смесь воды/метанола (с отношением по объему 5/95) и 0,05% муравьиной кислоты. Перед использованием подвижные фазы дегазируют.

     5 Стандартные растворы

     5.1 Стандартные соединения

Стандартные соединения необходимы для определения соединений методом ЖХ-МС. Для серийно выпускаемых аминов этилхлорформиатные (ЭХФ) производные для использования в качестве градуировочных стандартов легко приготовить путем прямого получения производных по реакции с ЭТ. Производные аминоизоцианатов получают по реакции одной из изоцианатных групп с ДБА, а другой - с этанолом. Перед использованием в качестве градуировочных стандартов должен быть проведен качественный и количественный анализ образовавшихся смешанных производных. Производные изоцианатов, аминоизоцианатов и аминов для соединений, не имеющиеся в продаже, могут быть приготовлены на основе технических изоцианатов или продуктов термической деструкции полиуретанов (ПУ). В качестве альтернативы могут быть использованы покупные стандартные растворы.

     5.2 Производные аминов и дейтерированные производные аминов

Стандартные растворы для градуировки приготавливают путем введения точно взвешенных количеств (приблизительно 0,1 ммоль) аминов в 100 см толуола. Раствор затем разбавляют до концентрации приблизительно 0,01 мкмоль/см. В полученные в толуоле растворы объемом 5 см вводят растворы аминов таких объемов, чтобы получить соответствующую градуировочную кривую. Процедуру подготовки проб на этом заканчивают; аналогичная методика приведена в 8.2.

Синтез производных заключается в следующем:

- растворяют аликвоты, содержащие 10 ммоль аминов и дейтерированных аминов, в 20 см толуола. Добавляют к ним 150 мм пиридина и 40 см NaOH концентрацией 5 моль/дм. Затем при постоянном помешивании добавляют по капле 1,5 см ЭХФ;

- по истечении 10 мин отделяют фракцию толуола;

- выпаривают реакционную смесь до сухого остатка в роторном испарителе и сушат остаток под вакуумом.

     5.3 Производные аминоизоцианатов

5.3.1 Приготовление растворов производных аминоизоцианатов

Для насыщения различных смешанных производных аминоизоцианатов используют две методики - A и B. Изоцианатные группы, например, в 2,4-ТДТ имеют различную реакционную способность, и может быть образовано два различных производных.

По методике A: растворяют аликвоты, содержащие 0,5 ммоль изоцианатов (ГДИ, 2,4- и 2,6-ТДИ, 4,4'-МДИ), в 50 см изооктана. К растворам изоцианатов при постоянном помешивании добавляют аликвоту, содержащую 0,5 ммоль ДБА в изооктане. По истечении 30 мин к растворам добавляют избыток этанола. Оставляют смесь на 16 ч для протекания реакции. Выпаривают растворы до сухого остатка и растворяют его в метаноле.

По методике B: растворяют аликвоты, содержащие 0,5 ммоль изоцианатов (2,4-ТДИ), в 50 см изооктана; при постоянном помешивании добавляют аликвоту, содержащую 0,5 ммоль этанола в изооктане, к раствору изоцианата. По истечении 16 ч к раствору добавляют избыток ДБА в изооктане. Раствор оставляют на 1 ч для протекания реакции. Раствор выпаривают в слабом потоке азота. Осадок растворяют в метаноле.

Идентификацию растворов проводят в соответствии с 5.3.2.

5.3.2 Идентификация

Разбавляют растворы метанолом до соответствующих концентраций, идентифицируют их методом ЖХ-МС и проводят количественную оценку методом ЖХ-ХЛД. Метод является специфичным по отношению к азоту, и в качестве внутреннего стандарта может быть использовано любое азотсодержащее соединение, например кофеин. Подобный метод для других аналитических задач приведен в [8], [9], [10].

     5.4 Продукты термической деструкции полиуретанов

5.4.1 Приготовление смешанных производных изоцианатов, аминов и аминоизоцианатов

В процессе термической деструкции, например ПУ, образуются изоцианаты, аминоизоцианаты и амины, не выпускаемые серийно. Материалы на основе ПУ могут разлагаться при соответствующей температуре. Продукты термического разложения улавливают в импинджере (непосредственно за которым расположен фильтр), содержащем раствор ДБА концентрацией 0,5 моль/дм, и впоследствии их подвергают процедуре, описанной в 7.2. Раствор идентифицируют в соответствии с 5.3.2.

5.4.2 Идентификация

Количественные данные получают методом ЖХ-МС. Данные по структуре соединений вместе с данными, полученными с применением ЖХ-ХЛД, используют для вычисления концентраций различных компонентов раствора. Этот разбавленный раствор пробы с известным качественным и количественным составом используют как градуировочный стандарт для ЖХ-МС.

     5.5 Стабильность производных аминов и аминоизоцианатов

Показано, что растворы ЭТ-производных аминов и ЭТ-ДБА-производных аминоизоцианатов (МДА, 2,4- и 2,6-ТДА, ГДА, МАИ, 2,4-, 4,2- и 2,6-ТАИ и ГАИ) в толуоле, ацетонитриле и метаноле стабильны в течение 6 мес.

     6 Аппаратура

     6.1 Устройство отбора проб

Пробу воздуха отбирают с помощью импинджерной колбы, непосредственно за которой расположен фильтр.

6.1.1 Фильтр

Используют фильтр из стекловолокна диаметром 13 мм (без связующего вещества) с размером пор 0,3 мкм.

6.1.2 Фильтродержатель

Используют фильтродержатель, изготовленный из полипропилена, диаметром 13 мм с наконечником Люэра.

6.1.3 Миниатюрный импинджер

Миниатюрный импинджер состоит из колбы и конусообразной входной трубки. Соединяют две части таким образом, чтобы расстояние между входным отверстием и дном приемника составляло от 1 до 2 мм. Держатель фильтра подсоединяют в выходному отверстию импинджера с использованием импинджера с наконечником Люэра на выходном отверстии. В иных случаях держатель фильтра подсоединяют к выходному отверстию импинджера гибкой трубкой.

6.1.4 Насос для отбора проб, соответствующий требованиям [19], способный к поддержанию расхода 1 дм/мин для отбора проб с использованием импинджера с фильтром и 0,2 дм/мин для отбора проб без растворителя в течение периода отбора проб.

6.1.5 Трубки

Используют резиновые соединительные трубки подходящей длины и соответствующего диаметра, обеспечивающие герметичное подсоединение к насосу и к выходному отверстию устройства отбора проб.

6.1.6 Ловушка паров

Используют ловушку внутренним диаметром 17 мм и длиной 140 мм, заполненную активированным углем (со средним размером частиц не более 3 мм), размещенную между устройством для отбора проб и насосом для отбора проб.

     6.2 Расходомер

Используют портативный расходомер, обеспечивающий измерение соответствующего расхода с приемлемой точностью.

     6.3 Жидкостный хроматограф

Для повышения чувствительности метода, сокращения времени технического обслуживания масс-спектрометра и сведения к минимуму расхода подвижной фазы используют жидкостный микрохроматограф. Описание используемого жидкостного микрохроматографа приведено ниже. При необходимости данный прибор может быть заменен на жидкостный хроматограф стандартного типа.

6.3.1 Автоматический дозатор

6.3.1.1 ЖХ-МС

Фокусировка пробы в колонке осуществляется с помощью петель с частичным заполнением (как правило, общей вместимостью 10 мм) путем дозирования 2 мм анализируемого раствора в промежутках между впрыскиванием 4+4 мм смеси вода/ацетонитрил/метанол с отношением компонентов по объему 50/30/20. Могут быть использованы любые автоматические дозирующие устройства, выпускаемые серийно, обеспечивающие впрыскивание раствора с частичным заполнением петли и впрыскивание пробы с приемлемой точностью и прецизионностью.

6.3.1.2 ЖХ-ХЛД

Фокусировка пробы в колонке осуществляется с помощью петель с частичным заполнением (как правило, общей вместимостью 10 мм) путем дозирования 2 мм анализируемого раствора в промежутках между впрыскиванием (4+4) мм смеси метанол/вода с отношением по объему компонентов 50/50. Могут быть использованы любые автоматические дозирующие устройства, выпускаемые серийно, обеспечивающие впрыскивание раствора с частичным заполнением петли и впрыскивание пробы с приемлемой погрешностью и прецизионностью.

6.3.2 Система насосов (ЖХ-МС и ЖХ-ХЛД)

Используют насос для высокоэффективной жидкостной хроматографии (ВЭЖХ), позволяющий проводить градиентное элюирование с расходом 100 мм/мин.

6.3.3 Аналитическая колонка (ЖХ-МС и ЖХ-ХЛД)

Используют колонку для ВЭЖХ, обеспечивающую разделение различных аналитов.

Пример - Подходящей колонкой является колонка РерМар (размером 501,0 мм и частицами наполнителя размером 3 мкм).

________________

РерМар - пример серийно выпускаемой продукции. Информация приведена для удобства пользователей настоящего стандарта и не служит рекламой данной продукции со стороны ИСО.

6.3.4 Капиллярные трубки

Используют короткие (не более 40 см) трубки с небольшим внутренним диаметром (как правило, не более 0,1 мм).

6.3.5 Детекторы

6.3.5.1 Масс-спектрометр для жидкостного хроматографа

Любой современный МС, оборудованный надежной и стабильно работающей системой управления электрораспыления, обеспечит необходимые характеристики. Детектирование с помощью МСД осуществляется посредством регистрации положительно заряженных ионов при ионизации в условиях атмосферного давления. Для количественного определения проводят мониторинг выбранных ионов. Полные спектры получают в режиме непрерывного сканирования (как правило, в диапазоне от 50 до 1500 а.е.м.) для идентификации неизвестных аналитов. При желании может быть использован УФД, установленный перед МСД. УФД должен быть снабжен проточной микрокюветой (как правило, вместимостью 0,3 мм) для сведения к минимуму уширения пиков.

6.3.5.2 Хемилюминесцентный детектор для жидкостного хроматографа

Используют детектор, специфический по отношению к связанному азоту.

     6.4 Ультразвуковая ванна

Воздействие на пробу ультразвуком необходимо для того, чтобы удостовериться, что ДБА-производные изоцианатов растворились в растворе для экстракции и что проба, остающаяся после выпаривания, должным образом растворилась в добавляемом растворителе.

     6.5 Испаритель

Необходимо использовать оборудование для выпаривания растворителя пробы, предпочтительно вакуумную центрифугу. Приемлемой считают методику мягкого выпаривания, поскольку существует риск, что жесткое выпаривание может привести к потерям наиболее летучих ДБА-производных изоцианатов.

     6.6 Стеклянная посуда

Стеклянная посуда, стеклянные мензурки и мерные колбы (мерные колбы должны соответствовать [18]).

     7 Отбор проб воздуха

     7.1 Подготовка к отбору проб в условиях лаборатории

7.1.1 Очистка оборудования для отбора проб

Импинджеры разбирают на части и помещают в раствор щелочного моющего средства минимум на 2 ч. Верхнюю часть промывают раствором щелочного моющего средства, затем чистой водой и в заключение деионизированной водой. Насадку при ее закупорке помещают в ультразвуковую ванну, а затем продолжают очистку. Нижнюю часть очищают в лабораторной посудомоечной машине. Обе части сушат в сушильном шкафу.

Кассеты фильтров и прокладки погружают в стеклянный лабораторный стакан с этанолом, обрабатывают ультразвуком в течение по крайней мере 15 мин, промывают деионизированной водой и сушат в сушильном шкафу.

7.1.2 Приготовление раствора реагента и пробирок с раствором для экстракции

Подготавливают пробирки с раствором реагента для импинджеров, содержащие 10 см раствора ДБА концентрацией 0,01 моль/дм. Если амины и аминоизоцианаты в газообразном и твердом состояниях улавливают раздельно, то подготавливают пробирки с раствором для экстракции фильтров, содержащие 10 см раствора ДБА концентрацией 0,01 моль/дм.

     7.2 Подготовка к отбору проб в условиях применения

Собирают систему отбора проб, присоединяя к выходу импинджера кассету с фильтрами из стекловолокна. Переносят раствор реагента в импинджер.

Насосы с подсоединенной системой отбора проб, содержащей импинджер с фильтром, калибруют с помощью портативного расходомера. На время градуировки заполняют импинджер раствором реагента соответствующего объема. Расход при отборе проб должен составлять 1 дм/мин.

     7.3 Отбор проб воздуха

7.3.1 Отбор проб

Для соотнесения результатов измерений с предельно допустимыми уровнями профессионального воздействия пробы отбирают в зоне дыхания работника. Для определения риска для работника быть подвергнутым воздействию изоцианатов отбирают стационарные пробы на любом участке рабочего места, где возможно их выделение в воздух и воздействие на работников. Также важно учитывать процедуры, выполняемые нечасто, например техническое обслуживание или ремонт. Различия материалов и партий материалов также следует учитывать при отборе проб. Отбирают достаточное число проб, чтобы провести представительную оценку воздействия.

Стационарные пробы могут быть отобраны как фоновые пробы или пробы, отражающие наихудший источник выбросов. Фоновые пробы обычно отбирают на уровне головы, принимая во внимание уровень головы рабочих при выполнении рабочих задач. Пробы для обнаружения источников выбросов или наихудших источников часто отбирают близко к рабочему процессу, и они не обязательно должны быть представительными для определения воздействия на рабочих, но являющихся представительными для идентификации "горячих точек", в которых в течение рабочего процесса выделяются вредные вещества.

7.3.2 Отбор проб с использованием импинджера и фильтра

Устанавливают систему отбора проб, прикрепляя оборудование к одежде работника так, чтобы входное отверстие находилось в зоне дыхания, при персональном отборе проб, или стационарно при отборе проб в конкретной зоне. Подсоединяют насос к системе отбора проб и размещают ловушку для паров с активированным углем на линии между насосом и системой отбора проб для защиты насоса от паров растворителя. Убеждаются в том, что оборудование для отбора проб не нарушает нормальный ход работы, и что импинджер может удерживаться в вертикальном положении во время всего периода отбора проб.

При готовности к отбору проб включают насос. Записывают время начала отбора проб. По окончании периода отбора проб измеряют расход. Ополаскивают импинджер 0,01-молярным раствором ДБА в толуоле. Переносят раствор для ополаскивания и раствор из импинджера в пробирку и, взяв фильтр из стекловолокна пинцетом, погружают его в пробирку с раствором пробы или в пробирку с раствором для экстракции. При перенесении фильтра в раствор для экстракции может быть определено количество изоцианатов в твердом состоянии, проходящих через импинджер (т.е. частицы диаметром приблизительно от 0,01 до 1,5 мкм) отдельно от изоцианатов в газообразном состоянии и крупных частиц (более 1,5 мкм), уловленных в импинджере. Иллюстрация процедуры отбора проб приведена на рисунке 2. Вычисляют объем воздуха, пропущенного через устройство отбора проб, по времени отбора проб и среднему значению расхода во время отбора проб. Общее время отбора проб ограничено (приблизительно 30 мин), если только во время отбора проб в импинджер не добавляют раствор реагента.

     7.4 Холостые пробы

Закупки не найдены
Свободные
Р
Заблокированные
Р
Роль в компании Пользователь

Для продолжения необходимо войти в систему

После входа Вам также будет доступно:
  • Автоматическая проверка недействующих стандартов в закупке
  • Создание шаблона поиска
  • Добавление закупок в Избранное