Внимание! В период с 29.07.22 по 07.08.22 сервис будет находиться в режиме технического обслуживания. В этой связи может наблюдаться нестабильная работа. Приносим извинения за неудобства.
1
Доступно поисковых запросов: 1 из 2
Следующий пробный период начнётся: 15 августа 2022 в 03:41
Снять ограничение

ГОСТ 33866-2016

Вакуумная технология. Турбомолекулярные насосы. Измерение крутящего момента для быстрого выключения
Недействующий стандарт
Проверено:  07.08.2022

Информация

Название Вакуумная технология. Турбомолекулярные насосы. Измерение крутящего момента для быстрого выключения
Название английское Vacuum technology. Turbomolecular pumps. Measurement of rapid shutdown torque
Дата актуализации текста 01.01.2021
Дата актуализации описания 01.01.2021
Дата издания 16.06.2017
Дата введения в действие 01.01.2018
Область и условия применения Настоящий стандарт распространяется на турбомолекулярные и молекулярные насосы и устанавливает метод измерения крутящего момента для быстрого выключения (разрушающего крутящего момента) насосов, в которых газовый импульс создается наклонными пластинами с осевым направлением потока и/или спиральными каналами
Опубликован Официальное издание. М.: Стандартинформ, 2017 год
Утверждён в Росстандарт

Расположение в каталоге ГОСТ

ГОСТ 33866-2016
(ISO 27892:2010)

     

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Вакуумная технология

ТУРБОМОЛЕКУЛЯРНЫЕ НАСОСЫ

Измерение крутящего момента для быстрого выключения

Vacuum technology. Turbomolecular pumps. Measurement of rapid shutdown torque



МКС 23.160

ОКП 36 4800

Дата введения 2018-01-01

     

Предисловие


Цели, основные принципы и базовый порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Акционерным обществом "Вакууммаш" (АО "Вакууммаш") на основе официального перевода на русский язык англоязычной версии стандарта, указанного в пункте 5, который выполнен ФГУП "Стандартинформ"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 249 "Вакуумная техника"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 27 июля 2016 г. N 89-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Россия

RU

Росстандарт


(Поправка. ИУС N 3-2022).

4 Приказом Федерального агентства по техническому регулированию и метрологии от 6 июня 2017 г. N 495-ст межгосударственный стандарт ГОСТ 33866-2016 введен в действие в качестве межгосударственного стандарта Российской Федерации с 1 января 2018 г.

5 Настоящий стандарт является модифицированным по отношению к международному стандарту ISO 27892:2010 "Вакуумная технология. Турбомолекулярные насосы. Измерение крутящего момента для быстрого выключения" ("Vacuum technology - Turbomolecular pumps - Measurement of rapid shutdown torque", MOD).

________________

Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.


При этом потребности национальных экономик стран, указанных выше, и/или особенности межгосударственной стандартизации учтены в дополнительном разделе 6, который выделен путем заключения в рамки из тонких линий, а информация с объяснением причин включения этих положений приведена в указанных пунктах (подпунктах или после соответствующих абзацев или статей) в виде примечаний

6 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты" (по состоянию на 1 января текущего года), а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)


ВНЕСЕНА поправка, опубликованная в ИУС N 3, 2022 год, введенная в действие с 12.10.2021

Поправка внесена изготовителем базы данных

Введение


Турбомолекулярные или молекулярные высоковакуумные насосы обладают большим количеством энергии, которая сосредоточена в роторе благодаря его высокой частоте вращения. В случае если происходит выход из строя ротора, энергия высвобождается в течение короткого промежутка времени и это может привести к разрушению корпуса насоса. Также в корпусе насоса образуется крутящий момент и существует вероятность того, что болты крепления насоса разрушатся.

Настоящий стандарт основан на результатах, полученных в процессе изучения отказов вероятностей, и разработан для производителей турбомолекулярных и молекулярных насосов с целью повышения безопасности потребителей.

Настоящий стандарт распространяется на методы измерения крутящего момента для быстрого выключения турбомолекулярных и молекулярных насосов.

Термин "турбомолекулярный насос", используемый в настоящем стандарте, является общим и включает молекулярные насосы и насосы, которые сочетают в себе обе технологии на одном валу.

     1 Область применения


Настоящий стандарт распространяется на турбомолекулярные и молекулярные насосы и устанавливает метод измерения крутящего момента для быстрого выключения (разрушающего крутящего момента) насосов, в которых газовый импульс создается наклонными пластинами с осевым направлением потока и/или спиральными каналами. Основными силами, воздействие которых приводит к выходу насоса из строя, являются моменты, образующиеся вокруг оси вращения. Другие незначительные дефекты, возникающие при работе насоса, не рассматриваются в данном стандарте.

Настоящий стандарт распространяется на два вида выхода из строя насоса: быстрое выключение по причине полного разрушения насоса и разрушение ротора. Разрушающий контроль приводит к полному разрушению или повреждению насоса, этот метод измерения может применяться как для турбомолекулярных так и для молекулярных насосов.

     2 Термины и определения


В настоящем стандарте применены следующие термины с соответствующими определениями:

2.1 входной фланец (inlet flange): Входной всасывающий фланец турбомолекулярного насоса, предназначенный для соединения с патрубком вакуумной камеры, которую необходимо откачать.

2.2 ротор; вращающийся корпус; вращающиеся детали (rotor; rotational body; rotational parts): Сборный блок (вакуумного насоса), состоящий из вала, корпуса и лопаток ротора, установленный на подшипниках и приводимый в действие электродвигателем.

2.3 лопатки ротора; лопатки турбины; вращающиеся лопатки (rotor blade; turbine blade; rotating blade): Деталь насоса, линейная скорость вращения которой близка к скорости звука и которая направляет поток откачиваемого газа в сторону выхлопа вакуумного насоса, аналогично лопаткам турбинного типа с осевым направлением потока.

2.4 корпус ротора; цилиндрическая часть ротора; втулка ротора (rotor body; cylinder part of rotor; rotor hub): Узел ротора (вакуумного насоса) за исключением лопаток.

2.5 центробежное разрушение; трещина, вызванная действием центробежной силы; разрыв, вызванный действием центробежной силы (centrifugal destruction; split caused by centrifugal force; rupture caused by centrifugal force): Дефекты, возникающие в корпусе ротора вследствие возникновения растягивающего напряжения по окружности сверх предельного значения, в результате воздействия центробежной силы на ротор во время работы.

2.6 разрушающий контроль (destructive test): Испытание корпуса на прочность и измерение разрушающего крутящего момента, приводящего к разрушению корпуса ротора (испытание на разрыв) или лопаток ротора (испытание на разрушение) турбомолекулярного насоса.

2.7 разрушающая частота вращения (destructive rotational frequency): Частота вращения ротора, при которой корпус ротора разрушается во время испытания.

2.8 механическая обработка канала (notch machining): Механическая обработка всего ротора или его части путем нанесения дефектов, создающих в корпусе ротора соответствующие концентрации напряжений, которые при проведении разрушающего контроля вызывают повреждение корпуса ротора при номинальной частоте вращения.

2.9 разрушающий крутящий момент; крутящий момент, приводящий к выключению; крутящий момент, приводящий к быстрому выключению (destructive torque; shutdown torque; rapid shutdown torque): Крутящий момент, вызванный центробежной силой при разрушении корпуса ротора, воздействующий напрямую или передаваемый на входной фланец через часть или все основание насоса при проведении разрушающего контроля.

     3 Символы и обозначения


- площадь поперечного сечения стержня, работающего на сжатие, м;

- внутренний диаметр патрубка, м;

- наружный диаметр патрубка, м;

- модуль продольной упругости (модуль Юнга) стержня, работающего на сжатие, Па;

- измеряемая сила, Н;

- модуль жесткости патрубка, Па;

- начальный момент инерции ротора вокруг оси вращения, кг·м;

- количество стержней, работающих на сжатие или датчиков силы;

- частота вращения, Гц;

- радиус положения стержня, работающего на сжатие или датчика силы, м;

- крутящий момент быстрого отключения, Н·м;

- время, с;

- измеряемое напряжение;

- угловая скорость, рад/с.

     4 Разрушающие методы контроля турбомолекулярных насосов

4.1 Общие требования

При разрушающих испытаниях насосы подвергаются разрушению под действием механических нагрузок, с целью последующего исследования материала внутри насоса. Существует два фактора, послуживших причиной разрушения насоса: полное разрушение всего насоса и разрушение ротора. Крепление насоса осуществляется либо через входной фланец, либо через основание насоса. Для проведения испытаний разрушающим контролем используют две схемы оборудования в соответствии с п.4.4, при этом наиболее подходящий метод испытаний выбирается производителем исходя из предполагаемого использования насоса.

Закупки не найдены
Свободные
Р
Заблокированные
Р
Роль в компании Пользователь

Для продолжения необходимо войти в систему

После входа Вам также будет доступно:
  • Автоматическая проверка недействующих стандартов в закупке
  • Создание шаблона поиска
  • Добавление закупок в Избранное