1
Доступно поисковых запросов: 1 из 2
Следующий пробный период начнётся: 02 октября 2022 в 11:28
Снять ограничение

ГОСТ Р 57165-2016

Вода. Определение содержания элементов методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой
Действующий стандарт
Проверено:  24.09.2022

Информация

Название Вода. Определение содержания элементов методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой
Название английское Water. Determination of elements by inductively coupled plasma atomic emission spectrometry
Дата актуализации текста 01.01.2021
Дата актуализации описания 01.01.2021
Дата издания 05.12.2019
Дата введения в действие 01.01.2018
Область и условия применения Настоящий стандарт распространяется на питьевую (в том числе расфасованную в емкости, минеральную), дистиллированную, природную (поверхностную, в том числе морскую, и подземную) и сточную (в том числе очищенную) воды, а также лед и атмосферные осадки и устанавливает метод измерений массовой концентрации следующих элементов атомно-эмиссионной спектрометрией с индуктивно связанной плазмой без учета разбавления: алюминия - от 0,01 до 50 мг/дм в степени 3; меди - от 0,001 до 50 мг/дм в степени 3; бария - от 0,001 до 50 мг/дм в степени 3; молибдена - от 0,001 до 10 мг/дм в степени 3; бериллия - от 0,0001 до 10 мг/дм в степени 3; мышьяка - от 0,005 до 50 мг/дм в степени 3; бора - от 0,01 до 50 мг/дм в степени 3; натрия - от 0,1 до 500 мг/дм в степени 3; ванадия - от 0,001 до 50 мг/дм в степени 3; никеля - от 0,001 до 10 мг/дм в степени 3; висмута - от 0,05 до 10 мг/дм в степени 3; олова - от 0,005 до 5,0 мг/дм в степени 3; вольфрама - от 0,05 до 10 мг/дм в степени 3; свинца - от 0,003 до 10 мг/дм в степени 3; железа - от 0,05 до 50 мг/дм в степени 3; селена - от 0,005 до 10 мг/дм в степени 3; кадмия - от 0,0001 до 10 мг/дм в степени 3; серебра - от 0,005 до 50 мг/дм в степени 3; калия - от 0,05 до 500 мг/дм в степени 3; серы - от 0,05 до 50 мг/дм в степени 3; кальция - от 0,01 до 50 мг/дм в степени 3; стронция - от 0,001 до 50 мг/дм в степени 3; кобальта - от 0,001 до 10 мг/дм в степени 3; сурьмы - от 0,005 до 50 мг/дм в степени 3; кремния - от 0,05 до 5,0 мг/дм в степени 3; титана - от 0,001 до 50 мг/дм в степени 3; лития - от 0,01 до 50 мг/дмв степени 3; фосфора - от 0,02 до 50 мг/дм в степени 3; магния - от 0,05 до 50 мг/дм в степени 3; хрома - от 0,001 до 50 мг/дм в степени 3; марганца - от 0,001 до 10 мг/дм в степени 3; цинка - от 0,005 до 50 мг/дм в степени 3. Метод может также применяться для определения указанных элементов в другие объектах, например в минерализатах активного ила и осадков сточных вод, полученных в соответствии с ГОСТ Р ИСО 15587-1 или ГОСТ Р ИСО 15587-2, при условии учета мешающих влияний и внесения при необходимости поправок. Метод может применяться и для анализа других элементов, если это предусмотрено конструкцией используемого спектрометра и описано в его Руководстве по эксплуатации. Пользователю настоящего стандарта следует провести валидацию метода для этих случаев согласно ГОСТ ИСО/МЭК 17025. Рекомендуемые длины волн и предел количественного определения элементов и мешающие элементы приведены в Приложении ДБ
Опубликован Официальное издание. М.: Стандартинформ, 2019 год
Утверждён в Росстандарт

Расположение в каталоге ГОСТ


ГОСТ Р 57165-2016
(ИСО 11885:2007)

     

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ


ВОДА


Определение содержания элементов методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой


Water. Determination of elements by inductively coupled plasma atomic emission spectrometry

     

ОКС 13.060.50

Дата введения 2018-01-01

     

Предисловие

1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью "Протектор" совместно с Закрытым акционерным обществом "Центр исследования и контроля воды" (ЗАО "ЦИКВ"), Закрытым акционерным обществом "РОСА" и Обществом с ограниченной ответственностью "Люмэкс-маркетинг" на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 343 "Качество воды"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 17 октября 2016 г. N 1413-ст

4 Настоящий стандарт модифицирован по отношению к международному стандарту ИСО 11885:2007* "Качество воды. Определение содержания некоторых элементов методом оптической эмиссионной спектрометрии с применением индуктивно связанной плазмы (ICP-OES)" (ISO 11885:2007 "Water guality. Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES)", MOD) путем:

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.


- изменения его структуры. Сопоставление структуры настоящего стандарта со структурой указанного международного стандарта приведено в дополнительном приложении ДА;

- введения дополнительных положений, фраз и слов для учета потребностей национальной экономики Российской Федерации и особенностей российской национальной стандартизации, выделенных в тексте настоящего стандарта курсивом*;

________________

* В бумажном оригинале обозначения и номера стандартов и нормативных документов в разделах "Предисловие", 1 "Область применения", приложениях ДА, ДГ приводятся обычным шрифтом; отмеченные в этих разделах знаком "**" и остальные по тексту документа выделены курсивом. - Примечание изготовителя базы данных.

     

- замены обозначения размерностей физических величин для приведения их в соответствие с ГОСТ 8.417-2002 для Системы "СИ";

- замены терминов "калибровка" и "калибровочные растворы" соответственно на "градуировка" и "градуировочные растворы" в соответствии с терминологией по ГОСТ Р 52361-2005;

- замены терминов "калибровочная кривая", "калибровочный график" на "градуировочная характеристика";

- замены термина "аналит" на "определяемый элемент";

- замены отдельных терминов на их синонимы, а именно "тара, контейнер, сосуд, бутыль" - на обобщающий синоним "емкость";

- исключения из области применения стандарта галлия, индия и циркония в связи с отсутствием в международном стандарте сведений о валидации метода для этих элементов;

- перенесения абзацев "Предупреждение" и "Важно" в раздел 7 настоящего стандарта;

- переноса таблицы 1 в Приложение ДБ настоящего стандарта;

- исключения пункта 10.4.2 в связи с тем, что метод стандартных добавок не применяется в Российской Федерации;

- переноса раздела 6 в Приложение ДВ настоящего стандарта;

- исключения из раздела Библиография библиографических ссылок, опубликованных в научной литературе на английском языке и в значительной степени утративших актуальность к моменту разработки настоящего стандарта.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5).

Сопоставление структуры настоящего стандарта со структурой примененного в нем международного стандарта приведено в дополнительном приложении ДА

Сведения о соответствии ссылочных национальных и межгосударственных стандартов международным стандартам, использованным в качестве ссылочных в примененном международном стандарте, приведены в дополнительном приложении ДГ

5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Ноябрь 2019 г.


Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

     1 Область применения


Настоящий стандарт распространяется на питьевую (в том числе расфасованную в емкости, минеральную), дистиллированную, природную (поверхностную, в том числе морскую, и подземную) и сточную (в том числе очищенную) воды, а также лед и атмосферные осадки и устанавливает метод измерений массовой концентрации следующих элементов атомно-эмиссионной спектрометрией с индуктивно связанной плазмой без учета разбавления:

алюминия

-

от 0,01 до 50 мг/дм;

меди

-

от 0,001 до 50 мг/дм;

бария

-

от 0,001 до 50 мг/дм;

молибдена

-

от 0,001 до 10 мг/дм;

бериллия

-

от 0,0001 до 10 мг/дм;

мышьяка

-

от 0,005 до 50 мг/дм;

бора

-

от 0,01 до 50 мг/дм;

натрия

-

от 0,1 до 500 мг/дм;

ванадия

-

от 0,001 до 50 мг/дм;

никеля

-

от 0,001 до 10 мг/дм;

висмута

-

от 0,05 до 10 мг/дм;

олова

-

от 0,005 до 5,0 мг/дм;

вольфрама

-

от 0,05 до 10 мг/дм;

свинца

-

от 0,003 до 10 мг/дм;

железа

-

от 0,05 до 50 мг/дм;

селена

-

от 0,005 до 10 мг/дм;

кадмия

-

от 0,0001 до 10 мг/дм;

серебра

-

от 0,005 до 50 мг/дм;

калия

-

от 0,05 до 500 мг/дм;

серы

-

от 0,05 до 50 мг/дм;

кальция

-

от 0,01 до 50 мг/дм;

стронция

-

от 0,001 до 50 мг/дм;

кобальта

-

от 0,001 до 10 мг/дм;

сурьмы

-

от 0,005 до 50 мг/дм;

кремния

-

от 0,05 до 5,0 мг/дм;

титана

-

от 0,001 до 50 мг/дм;

лития

-

от 0,01 до 50 мг/дм;

фосфора

-

от 0,02 до 50 мг/дм;

магния

-

от 0,05 до 50 мг/дм;

хрома

-

от 0,001 до 50 мг/дм;

марганца

-

от 0,001 до 10 мг/дм;

цинка

-

от 0,005 до 50 мг/дм.


Примечание - Метод определяет массовую концентрацию элементов, находящихся в любом состоянии, виде и валентности в органических и неорганических соединениях (суммарная концентрация).


Если измеренная концентрация превышает указанный диапазон, то исходную или подготовленную к анализу пробу можно разбавить, но не более чем в 100 раз.

Метод может также применяться для определения указанных элементов в других объектах, например в минерализатах активного ила и осадков сточных вод, полученных в соответствии с ГОСТ Р ИСО 15587-1 или ГОСТ Р ИСО 15587-2, при условии учета мешающих влияний и внесения при необходимости поправок. Метод может применяться и для анализа других элементов, если это предусмотрено конструкцией используемого спектрометра и описано в его Руководстве по эксплуатации. Пользователю настоящего стандарта следует провести валидацию метода для этих случаев согласно ГОСТ ISO/IEC 17025.

Рекомендуемые длины волн и предел количественного определения элементов и мешающие элементы приведены в Приложении ДБ.

     2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 17.1.5.05 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков
     
     
ГОСТ 1770 (ИСО 1042-83, ИСО 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия
     
     
ГОСТ 3769 Реактивы. Аммоний сернокислый. Технические условия
     
     
ГОСТ 4461 Реактивы. Кислота азотная. Технические условия
     
     
ГОСТ 6709 Вода дистиллированная. Технические условия
     
     
ГОСТ 10929 Реактивы. Водорода пероксид. Технические условия
     
     
ГОСТ 11125 Кислота азотная особой чистоты. Технические условия
     
     
ГОСТ 14261 Кислота соляная особой чистоты. Технические условия
     
     
ГОСТ 14262 Кислота серная особой чистоты. Технические условия
     
     
ГОСТ 14919 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия
     
     
ГОСТ ISO/IEC 17025 Общие требования к компетентности испытательных и калибровочных лабораторий
     
     
ГОСТ 25336 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры
     
     
ГОСТ 29169 (ИСО 648-77) Посуда лабораторная стеклянная. Пипетки с одной отметкой
     
     
ГОСТ 29227 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования
     
     
ГОСТ 31861 Вода. Общие требования к отбору проб
     
     
ГОСТ 32220 Вода питьевая, расфасованная в емкости. Общие технические условия
     
     
ГОСТ Р 8.736 Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения
     
     
ГОСТ Р ИСО 5725-1 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Термины и определения
     
     
ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике
     
     
ГОСТ Р ИСО 15587-1 Вода. Минерализация проб смесью соляной и азотной кислот для определения некоторых элементов
     
     
ГОСТ Р ИСО 15587-2 Вода. Минерализация проб азотной кислотой для определения некоторых элементов
     
     
ГОСТ Р 52361 Контроль объекта аналитический. Термины и определения
     
     
ГОСТ Р 52501 (ИСО 3696:1987) Вода для лабораторного анализа. Технические условия
     
     
ГОСТ Р 56219-2014 (ИСО 17294-2:2003) Вода. Определение содержания 62 элементов методом масс-спектрометрии с индуктивно связанной плазмой.
     
     
ГОСТ Р 56237 (ИСО 5667-5:2006) Вода питьевая. Отбор проб на станциях водоподготовки и в трубопроводных распределительных системах

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку     

     3 Термины и определения


В настоящем стандарте применены термины, приведенные в ГОСТ Р 52361 и ГОСТ Р ИСО 5725-1.

     4 Сущность метода


Метод основан на распылении пробы и переносе аэрозоля в плазменную горелку, в которой происходит возбуждение атомов элементов в аргоновой плазме, индуктивно возбуждаемой радиочастотным полем, приводящее к характеристическому эмиссионному спектру. Интенсивность спектральных линий в получаемом эмиссионном спектре регистрируется детектором, сигналы которого обрабатываются при помощи компьютерной программы. Влияние фона учитывают путем его коррекции.

Мешающие влияния, иначе называемые матричными эффектами, и способы их устранения приведены в приложении ДВ.

     5 Отбор проб

5.1 Отбор проб проводят по ГОСТ 31861, ГОСТ Р 56237 и ГОСТ 17.1.5.05. При отборе следует избегать любых загрязнений, это особенно важно для анализа элементов на уровне их следовых и ультраследовых концентраций. Конструкция устройства для отбора проб должна исключать возможность контакта пробы с металлическими частями. Части устройства, контактирующие с пробой, должны быть выполнены из пластика, не загрязняющего пробу элементами и допускающего очистку разбавленной соляной или азотной кислотой. При отборе проб сточных вод допускается использование стеклянных и эмалированных емкостей.

Массовая концентрация элементов может меняться весьма быстро после отбора проб вследствие сорбции или десорбции. Это исключительно важно, например, в случае бора, висмута, вольфрама, мышьяка, олова, селена, серебра, сурьмы, титана.

Материал емкости для отбора, хранения и транспортирования проб выбирают в соответствии с требованиями раздела 8. Подготовка и проверка чистоты емкостей для отбора проб - по 8.1.

5.2 Для определения растворенных форм элементов пробу фильтруют через мембранный фильтр с диаметром пор 0,45 мкм как можно скорее после отбора, но не позднее, чем через 4 ч.

Добавляют 0,5 см азотной кислоты (см. 7) на каждые 100 см фильтрата пробы. С помощью универсальной индикаторной бумаги определяют значение рН пробы, которое должно быть менее 2, в противном случае добавляют азотную кислоту до достижения требуемого значения рН.

При определении элементов, образующих соединения, имеющие тенденцию к осаждению и гидролизу, например висмута, олова, серебра, сурьмы, в отдельную порцию фильтрата вносят 1,0 см соляной кислоты (см. 7) на каждые 100 см фильтрата. С помощью универсальной индикаторной бумаги определяют значение рН пробы, которое должно быть менее 1; в противном случае добавляют соляную кислоту до достижения требуемого значения рН.

Примечание - При невозможности определения рН пробы рекомендуется добавлять кислоты в два раза больше указанного объема. При подкислении пробы азотной кислотой допускается использовать разбавленную 1:1 азотную кислоту с соответствующим увеличением применяемого объема в два раза.

5.3 Для определения взвешенных форм элементов измеренный объем пробы воды фильтруют через мембранный фильтр с размером проб 0,45 мкм в течение максимально короткого времени после отбора. Фильтр с осадком помещают в контейнер и хранят до начала анализа. При этом никакого консервирования не требуется.

5.4 Для определения общего содержания элементов пробу консервируют азотной кислотой (см. 7) из расчета 0,5 см азотной кислоты на каждые 100 см пробы. С помощью универсальной индикаторной бумаги определяют значение рН пробы, значение рН должно быть менее 2, в противном случае добавляют азотную кислоту до достижения требуемого значения рН. Срок хранения пробы до консервации не должен превышать 24 ч.

Примечание - При невозможности определения рН пробы рекомендуется добавлять кислоты в два раза больше указанного объема. При подкислении пробы азотной кислотой допускается использовать разбавленную 1:1 азотную кислоту с соответствующим увеличением применяемого объема в два раза.

5.5 Сроки и температурные условия хранения воды, расфасованной в емкости, должны соответствовать требованиям, указанным в ГОСТ 32220.

     6 Условия проведения измерений          

Лаборатории, проводящие анализ, включая требования к испытателям, должны соответствовать требованиям ГОСТ ISO/IEC 17025.

ПРЕДУПРЕЖДЕНИЕ - Настоящий стандарт не предусматривает ознакомление персонала со всеми проблемами безопасности, связанными с его применением. Обязанностью пользователя является соблюдение соответствующих требований, касающихся безопасности и охраны здоровья, в соответствии с национальным законодательством.

     7 Средства измерений, вспомогательное оборудование, реактивы, материалы


Атомно-эмиссионный спектрометр (далее - спектрометр) с радиочастотным генератором для возбуждения индуктивно связанной аргоновой плазмы, оборудованный распылителем, устройством для контроля скорости потока аргона (масс-флоу контроллер), монохроматором или полихроматором для выделения спектральных линий, устройством для обработки выходных сигналов спектрометра с возможностью коррекции фоновых сигналов.

Примечания

1 В связи с разнообразием моделей спектрометров невозможно указать приборные настройки и условия проведения измерений, пригодные для всех случаев.

2 Могут быть использованы распылители различной конструкции, в том числе ультразвуковые. Последние предпочтительны при необходимости определения низких содержаний элементов, однако, их недостатками является повышенная чувствительность к матричным эффектам, а также меньшая устойчивость по отношению к высокой концентрации растворенных веществ и большее время промывки.

3 Современные спектрометры выпускаются с системами ввода высококонцентрированных образцов, что позволяет анализировать, например, морские воды без разбавления или с минимальным разбавлением.


Система подачи аргона высокой чистоты, например более 99,95%.

Стандартные образцы (далее - СО) состава растворов элементов с аттестованным номинальным значением массовой концентрации 1000 мг/дм и погрешностью аттестованного значения не более ±2% (для Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Со, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, W, Zn).

Примечания

1 Применяют как одно-, так и многоэлементные СО или аттестованные смеси (далее - АС) по [1]. Допускаются СО или АС состава растворов элементов с другими концентрациями (например, 100 мг/дм, а для калия и натрия при приготовлении растворов высоких концентраций - 10 г/дм).

2 СО стабильны в течение более 1 года, но для гарантии их стабильности следует соблюдать рекомендации изготовителя по их хранению.

3 Для серы, фосфора, бора и кремния допускается использование стандартных образцов состава раствора сульфат-, фосфат-, борат- и силикат-ионов соответственно. При приготовлении растворов по 8.2 следует учитывать, что аттестованное значение этих стандартных образцов обычно выражается в единицах массовой концентрации соответствующих ионов.

4 Стандартные образцы некоторых элементов (например, фосфора, серы, бора, кремния) содержат или могут содержать другие элементы (калий, натрий), что необходимо учесть при приготовлении растворов элементов по 8.2.


Колбы мерные 2-100-2, 2-200-2, 2-500-2, 2-1000-2 по ГОСТ 1770.

Цилиндры мерные 2-25-2, 2-50-2, 2-100-2, 2-250-2, 2-500-2 или любого другого исполнения по ГОСТ 1770.

Пипетки градуированные 1-1-2-0,5; 1-1-2-1; 1-1-2-5; 1-1-2-10; 1-1-2-25 или других типов и исполнений по ГОСТ 29227.

Пипетки с одной отметкой 1-2-10; 1-2-25; 1-2-100 или других исполнений по ГОСТ 29169.

Примечание - Допускается использовать:

- пипеточные дозаторы, что позволяет готовить градуировочные растворы меньших объемов;

- устройства для разбавления проб (дилуторы);

- диспенсеры переменного объема для кислот.


Конические колбы (колбы Эрленмейера), например вместимостью 50 и 100 см по ГОСТ 25336 или реакционный сосуд вместимостью 50 см из боросиликатного стекла или политетрафторэтилена, к которому может быть подключен обратный холодильник из боросиликатного стекла по ГОСТ 25336.

Емкости для отбора и хранения проб и растворов.

Примечание - Стабильность проб, промежуточных, рабочих и градуировочных растворов (см. 8.2-8.4) в значительной степени зависит от материала емкости, который должен быть выбран в соответствии со спецификой применения. Для определения элементов в очень низких концентрациях нельзя использовать стекло или поливинилхлорид (ПВХ). Вместо них рекомендуется использовать емкости из перфторалкокси, полифторэтиленпропилена или кварца. Для определения элементов в более высоких концентрациях для хранения и подготовки проб допускаются емкости из полиэтилена высокого давления или политетрафторэтилена. В любом случае необходимо проверить приемлемость выбранных емкостей, например путем анализа фоновых градуировочных растворов (см. 8.4), приготовленных и хранящихся в проверяемых емкостях.


Фильтры мембранные с диаметром пор 0,45 мкм. Каждая партия должна быть проверена на чистоту.

Устройство для фильтрования с использованием мембранных фильтров.

Примечание - рекомендуется использовать устройства, выполненные из стекла или политетрафторэтилена, недопустим контакт проб с металлическими частями устройств.


Устройства, применяемые при минерализации проб (в зависимости от способа минерализации) по ГОСТ Р ИСО 15587-1 и ГОСТ Р ИСО 15587-2.

Плитка электрическая с закрытой спиралью по ГОСТ 14919.

Вода дистиллированная по ГОСТ 6709, или вода бидистиллированная или вода деионизованная, или вода для лабораторного анализа 1 степени чистоты по ГОСТ Р 52501, или вода, полученная с помощью установки для получения воды высокой степени чистоты (далее - вода для анализа), удовлетворяющая требованиям 8.9.

Азотная кислота по ГОСТ 4461, х.ч. - для подготовки посуды (см. 8.1); по ГОСТ 11125, ос.ч. - для подготовки проб и приготовления растворов.

Пероксид водорода по ГОСТ 10929 с массовой долей основного вещества 30%, х.ч.

Примечание - Следует обратить внимание на то, что пероксид водорода часто бывает стабилизирован фосфорной кислотой, что следует иметь в виду при определении фосфора.


Серная кислота по ГОСТ 14262, ос.ч.

Соляная кислота по ГОСТ 14261, ос.ч.

Аммоний сернокислый по ГОСТ 3769, х.ч.

Универсальная индикаторная бумага.

Примечание - Допускается использовать реактивы других марок и квалификаций, в том числе импортные, удовлетворяющие требованиям 8.9.

     8 Подготовка к проведению измерений     

8.1 Подготовка емкостей

Все используемые для отбора, хранения, транспортирования и анализа проб емкости промывают разбавленной 1:1 азотной кислотой, затем большим количеством водопроводной и (или) дистиллированной воды и ополаскивают 3-4 раза бидистиллированной водой или водой для анализа. Не допускается обрабатывать посуду смесями, содержащими хром.

Для анализа ультраследовых количеств элементов (например, чистая озерная или морская вода, вода из специализированных установок очистки и т.п.) емкости из перфторалкокси, полифторэтиленпропилена или кварца очищают при необходимости горячей концентрированной азотной кислотой (см. 7) в замкнутой системе и затем ополаскивают несколько раз водой для анализа (см. 7). Непосредственно перед использованием все стеклянные емкости тщательно промывают горячей разбавленной азотной кислотой (см. 8.6) и затем ополаскивают несколько раз водой для анализа (см. 7).

Каждую партию мембранных фильтров, наконечников для дозаторов, одноразовых емкостей проверяют на наличие загрязнений, например анализируя фоновый градуировочный раствор (см. 8.4).

8.2 Приготовление растворов элементов

8.2.1 Общие положения

Рабочие растворы, применяемые для приготовления градуировочных растворов (см. 8.3), могут быть как одно-, так и многоэлементными. В общем случае, готовя многоэлементные растворы, следует учитывать химическую совместимость и возможность гидролиза компонентов. Особое внимание следует уделить тому, чтобы избежать нежелательных химических реакций (например, осаждения). Примеры приготовления одно- и многоэлементных рабочих растворов из одноэлементных СО приведены в 8.2.2-8.2.9.

Допускается приготовление меньшего или большего объема рабочих растворов и/или с иными значениями массовой концентрации элементов по сравнению с 8.2.2-8.2.9 путем пропорционального уменьшения или увеличения объема мерной колбы, аликвот СО или АС состава растворов элементов, азотной и/или соляной кислот.

Допускается исключать отдельные элементы из состава многоэлементных рабочих растворов. При необходимости рекомендуется использовать способы приготовления растворов элементов, описанных в пунктах 9.3-9.5 ГОСТ Р 56219-2014.

Многоэлементные рабочие растворы хранят в темном месте при температуре от 2°С до 8°С.

8.2.2 Многоэлементный рабочий раствор A с номинальной массовой концентрацией 10 мг/дм каждого из следующих элементов: Al, Cd, Co, Cr, Cu, Fe, Pb, Li, Mn, Mo, Ni, V, Zn, Bi, W

В мерную колбу вместимостью 100 см помещают примерно 25 см воды для анализа (см. 7). Добавляют 0,5 см азотной кислоты (см. 7), вносят пипетками или дозатором по 1 см стандартных образцов состава растворов каждого из указанных элементов, доводят до метки водой для анализа (см. 7) и переносят в емкость для хранения (см. 7).

Срок хранения раствора - 1 мес.

8.2.3 Многоэлементный рабочий раствор B с номинальной массовой концентрацией каждого из элементов (Sn, Ti, As, Se, Sb) 10 мг/дм

В мерную колбу вместимостью 100 см помещают примерно 25 см воды для анализа (см. 7). Добавляют 0,5 см соляной кислоты (см. 7) и вносят пипетками или дозатором по 1 см каждого из СО состава растворов элементов (Sn, Ti, As, Se, Sb) (см. 7), доводят до метки водой для анализа (см. 7) и переносят в емкость для хранения (см. 7).

Срок хранения раствора - 1 мес.

8.2.4 Многоэлементный рабочий раствор С с номинальной массовой концентрацией каждого из элементов (Ba, Be, Sr) 10 мг/дм

В мерную колбу вместимостью 100 см помещают примерно 25 см воды для анализа (см. 7). Добавляют 0,5 см азотной кислоты (см. 7) и вносят пипетками или дозатором по 1 см каждого из СО состава растворов элементов (Ba, Be, Sr) (см. 7), доводят до метки водой для анализа (см. 7) и переносят в емкость для хранения (см. 7).

Срок хранения раствора - 2 мес.

8.2.5 Рабочий раствор D с номинальной массовой концентрацией серебра 1 мг/дм

В мерную колбу вместимостью 1000 см помещают примерно 250 см воды для анализа (см. 7). Добавляют 5 см азотной кислоты и 10 см соляной кислоты (см. 7) для стабилизации серебра в форме [AgCl] и вносят пипеткой или дозатором 1 см СО состава раствора серебра (см. 7), доводят до метки водой для анализа (см. 7) и переносят в емкость для хранения из темного стекла.

Срок хранения раствора - 14 сут.

8.2.6 Рабочий раствор Е с номинальной массовой концентрацией бора 10 мг/дм

В мерную колбу вместимостью 100 см помещают примерно 25 см воды для анализа (см. 7). Добавляют 0,5 см азотной кислоты (см. 7) и вносят пипеткой или дозатором 1 см СО состава раствора бора (см. 7), доводят до метки водой для анализа (см. 7) и переносят в емкость для хранения (см. 7).

Срок хранения раствора - 2 мес.

Примечания

1 Рекомендуется использовать мерные колбы из полимерных материалов.

2 Присутствие бора значительно увеличивает время промывки системы ввода проб. Во избежание получения ошибочных результатов рекомендуется его концентрацию в градуировочных растворах поддерживать на максимально возможном низком уровне.

3 При использовании стандартных образцов состава борат-ионов массовую концентрацию бора в приготовленном растворе следует пересчитать и соответственно необходимо увеличить объем применяемого СО.

8.2.7 Многоэлементный рабочий раствор F с номинальной массовой концентрацией каждого из элементов (Ca, Mg, Na, K) 100 мг/дм

В мерную колбу вместимостью 100 см отбирают пипетками или дозатором по 10 см СО состава раствора элементов (Cа, Mg, Na, K) (см. 7), добавляют 0,5 см азотной кислоты (см. 7), доводят до метки водой для анализа (см. 7) и переносят в емкость для хранения (см. 7).

Срок хранения раствора - 2 мес.

8.2.8 Многоэлементный рабочий раствор с номинальной массовой концентрацией каждого из элементов (P, S) 100 мг/дм

В мерную колбу вместимостью 100 см отбирают пипетками или дозатором по 10 см СО состава раствора элементов (P, S) (см. 7), добавляют 0,5 см азотной кислоты (см. 7), доводят до метки водой для анализа (см. 7) и переносят в емкость для хранения (см. 7).

Срок хранения раствора - 2 мес.

Примечание - При использовании стандартных образцов состава сульфат- и фосфат-ионов массовую концентрацию серы и фосфора в приготовленном многоэлементном растворе следует пересчитать и соответственно увеличить объем применяемого СО.

8.2.9 Рабочий раствор Si с номинальной массовой концентрацией кремния 10 мг/дм

В мерную колбу вместимостью 100 см помещают примерно 25 см воды для анализа (см. 7), вносят пипеткой или дозатором 1 см СО состава раствора кремния (см. 7), доводят до метки водой для анализа (см. 7) и переносят в емкость для хранения (см. 7).

Срок хранения раствора - 1 мес.

Примечания

1 Рекомендуется использовать мерные колбы из полимерных материалов.

2 При использовании стандартных образцов состава силикат-ионов массовую концентрацию кремния в приготовленном растворе следует пересчитать и соответственно необходимо увеличить объем применяемого СО.

8.3 Приготовление градуировочных растворов

Массовые концентрации элементов в градуировочных растворах должны быть такими, чтобы обеспечить перекрывание рабочего диапазона спектрометра в соответствии с рекомендациями его изготовителя.

Градуировочные растворы готовят путем ступенчатого разбавления стандартных образцов состава растворов элементов (см. 7) и/или рабочих растворов (см. 8.2.2-8.2.9), как индивидуальных, так и их смесей. На каждой ступени разбавление рабочего раствора должно быть не более чем в 100 раз. Например, 1 см многоэлементного рабочего раствора А (см. 8.2.2) разбавляют водой для анализа в мерной колбе вместимостью 100 см, добавляя перед доведением раствора до метки водой для анализа 0,5 см азотной кислоты (см. 7). Если при обработке пробы была использована соляная кислота (см. 5.2), то перед доведением раствора до метки добавляют 1 см соляной кислоты (см. 7).

Срок хранения растворов при температуре от 2°С до 8°С (кроме растворов, содержащих серебро и легко гидролизующиеся элементы) с массовой концентрацией элементов выше 10 мг/дм - не более 2 мес; с массовой концентрацией от 1 до 10 мг/дм - не более 1 мес; с массовой концентрацией от 0,1 до 1 мг/дм - не более 7 сут.

Градуировочные растворы, содержащие легко гидролизующиеся элементы и серебро, готовят перед использованием.

8.4 Приготовление фонового раствора

В мерную колбу вместимостью 100 см вносят кислоту как при приготовлении градуировочных растворов (см. 8.3) и доводят объем до метки водой для анализа (см. 7).

Фоновый раствор для градуировки готовят перед использованием.

8.5 Приготовление раствора соляной кислоты молярной концентрации

с (HCI)=0,2 моль/дм

Закупки не найдены
Свободные
Р
Заблокированные
Р
Роль в компании Пользователь

Для продолжения необходимо войти в систему

После входа Вам также будет доступно:
  • Автоматическая проверка недействующих стандартов в закупке
  • Создание шаблона поиска
  • Добавление закупок в Избранное